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two approaches led to the formulation of the final system:
the segment vocoder.

In the second year, the segment vocoder was implemented
and tested. The segment vocoder models speech as a sequence
of segments. A segment consists of a sequence of frames and
has a duration comparable to the duration of a diphone. In
the segment vocoder, a segment is determined automatically by
a segmentation algorithm and does not require the labor
intensive process of hand labelling. The work on vector
quantization and Markov modeling determined that both the
log-area-ratio (LAR) parameters representing a single frame
of speech and the LARs of consecutive frames are statistically
dependent. This statistical dependence has been exploited by
quantizing a segment as a single unit in the segment vocoder.

The segment vocoder, operating in a single speaker mode,
was demonstrated during the final ARPA NSC meeting in June,
1982. The vocoder used an average bit rate of 150 b/s
to transmit the speech of a single speaker. The vocoded
sentences were highly intelligible. The quality of the vocoded
speech was quite close to the quality of an LPC synthesizer
using unquantized parameters and therefore quite natural
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During the first year, we also investigated the use of
several techniques for multispeaker synthesis. The goal was
to use a set of templates (segment templates or diphone
templates) that were derived from one speaker to synthesize
speech that sounded more like a new vocoder user. In this
report we describe the above algorithms and present our
results on the VLR vocoder.
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1. OVERVIEW

The primary goal of this two-year project was to demonstrate

a very-low-rate (VLR) vocoder that transmits speech at a rate of

100 to 200 b/s. At these bit rates, the vocoded speech is

required to be intelligible in context, i.e., the vocoder can be

used in a conversation. The quality of the vocoded speech was to

be as natural sounding as possible.

In the first- year, we investigated two independent

approaches for designing the VLR vocoder. The first approach was

the phonetic vocoder in which the sequence of phonemes in the

input speech must be automatically recognized. The phonetic

vocoder uses a supervised training approach and requires a

database of phonetically transcribed and hand labelled speech.

The second approach uses vector quantization and Markov chain

modeling to reduce the bit rate of an LPC vocoder from 2400 b/s

to the range of 100-200 b/s. This latter approach is
V

unsupervised and does not require any human effort in the

training phase. The work on the above two approaches led to the

formulation of the final system: the segment vocoder.

In the second year, the segment vocoder was implemented and

tested. The segment vocoder models speech as a sequence of

segments. A segment consists of a sequence of frames and has a

1- --
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duration comparable to the duration of a diphone. In the segment

*vocoder, a segment is determined automatically by a segmentation

algorithm and does not require the labor intensive process of

hand labelling. The work on vector quantization and Markov

modeling determined that both the log-area-ratio (LAR) parameters

representing a single frame of speech and the LARs of consecutive

frames are statistically dependent. This statistical dependence

has been exploited by quantizing a segment as a single unit in

the segment vocoder. We call this process segment quantization.

The segment vocoder, operating in a single speaker mode, was

demonstrated during the final ARPA NISC meeting in June, 1982.

The vocoder used an average bit rate of 150 b/s to transmit the

speech of a single speaker. The vocoded sentences were highly

intelligible. The quality of the vocoded speech was quite cloce'

to the quality of an LPC synthesizer using unquantized pa-ameters

and therefore quite natural sounding.

During the first year, we also investigated the use of

several techniques for multispeaker synthesis. The goal was to

use a set of templates (segment templates or diphone templates)

that were derived from one speaker to synthesize speech that

sounded more like a new vocoder user. By using an average vocal

tract length normalization and a long term average spectrum

*normalization, the spectral parameters of the templates can be

2
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modified to sound more like the new speaker. For those speakers

whose speech was significantly different from the database

talker, the resulting output speech sounded much more like the

new intended speaker.

gThe final report is organized into five major Sections. In

each Section we describe the work that was done on one major

topic. These five topics are:

- Phonetic vocoder
- Vector quantization
- Markov chain models for speech
- Segment vocoder
- Multiple speaker synthesis

We summarize below the major issues and results of each Section.

VWe have included in Appendix I of this report three conference

papers that describe several aspects and results of the work

performed under this project. The first two papers were

presented at the International Conference on Acoustics, Speech

and Signal Processing in Paris, 1982. The third paper was

presented in Globecom-82, in Miami, 1982.

1.1 Phonetic vocoder

During the first year of the project, we performed several

experiments with the phonetic vocoder approach to very-low-rate

U
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vocoding. This approach uses an automatic speech recognition

technique to transmit speech at 100 b/s. The speech recognizer

uses a diphone network model of speeich for the recognition

process. A diphone is defined as the region from the middle of a

phoneme to the middle of the following phoneme. Thus, we expect

the diphone model to represent most of the coarticulatory effects

of one phoneme on adjacent phonemes. Since not all diphones can

follow a given diphone (two successive diphones must have a

common phoneme), we use a diphone network to specify these

sequential constraints.

The recognition process is a matching process. An input

sentence is matched to the nearest path (using a spectral

distance measure) in the diphone network. The sequence of

diphones in the nearest path to the input is considered as the

input diphone sequence. In the diphone network, we typically

have several templates for each diphone. At the receiver, only 9

one template per diphone is used in synthesis. Therefore the

spectral error between the input and the synthesized output is

quite large. But if the recognition process is highly accurate,

the synthesized speech would be intelligible since the correct

phoneme sequence in the input is reproduced in the synthesized

output. We determined that a phoneme recognition rate of 80% is

necessary to achieve the proper performance level in the

4
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matching process. Due to computational limitations a beam search

is used to determine the best matching path. A stack length of

600 simultaneous theories was found to be adequate. Increasing

the stack length to 3000 did not improve the recognition rate

significantly.

The major issues of the phonetic vocoder have been the

amount of training data necessary to estimate the diphone model

and how the training data is used. Obtaining a training data set

requires a large human effort since we must segment and label

continuous speech. A total of 5 minutes of speech was labelled.

0? An initial estimate of the diphone network was based on one

diphone template for each of 2800 diphones where each template is

extracted from a carefully recorded nonsense syllable that

contains the required diphone. This network is also used for

synthesis. The phoneme recognition rate was 36% when the diphone

network based on the nonsense syllables is used. By adding

additional diphone templates extracted from continuous speech the

performance improved to 62% when a total of 4200 templates were

used. A significantly larger amount of training data is expected

to improve the recognition performance. But, the human effort

required to hand label the required database is prohibitively

expensive. We therefore investigated an alternative approach to

the phonetic vocoder that avoids the transcription and hand

5
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labelling of speech. The work on the segment vocoder will be

described in Section 5. In our work on the phonetic vocoder, we

have evaluated several methods for using the additional diphone

templates. These will be discussed in Section 2.

We also describe in Section 2, some variations on the

phonetic vocoder that improved the intelligibility of the

vocoder, with a moderate increase in the bit rate. In the

phonetic vocoder, the synthesized diphone can have a rather

different spectrum from the input diphone. The diphone template

used for synthesis is not necessarily the nearest template to the

input. To improve the spectral match between the input and the .4

synthesized output, we specified which template was nearest to

the input. This allophone vocoder requires an additional 30 b/s

and has a slightly higher intelligibility than the phonetic '4

vocoder. In order to improve the spectral match further, we did

not use the network constraints, i.e., any diphone was allowed to

follow a given diphone. This diphone vocoder has a bit rate

around 200 b/s and is quite intelligible.. The segment vocoder,

.[i described in Section 5, is an extension of the diphone vocoder

that does not require any hand labelling of speech.

*. 1.2 Vector Quantization

" 6
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We describe in Section 3 several methods for quantizing the

LAR parameters used to represent a single frame of speech. We

compared several clustering algorithms for designing a vector

quantizer. We found that a non-uniform binary clustering

algorithm achieved a good performance with a large savings in the

* computational load as compared to the optimal K-means algorithm.

We also used a model of optimal scalar quantization to evaluate

the gain due to statistical dependence in vector quantization.

In particular, we found that coding 14 LAR parameters of a single

frame of speech required 10 bits for a vector quantizer instead

of 15 bits for an optimal scalar quantizer for the same

quantization error. Since the vector quantizer has a 30% lower

bit rate than the optimal scalar quantizer, the former

quantization scheme was used with a variable frame rate (VFR)

algorithm to transmit the spectrum alone at 180 b/s (6 bits x 30

frames/s). This system yields intelligible speech for a single

speaker and was usid for the Markov chain modelling of speech.

The work on vector quantization is described in detail in Section

4.

1.3 Markov Chain Models of Speech

To reduce the bit rate of an LPC vocoder that uses a 6 bit

vector quantizer for the spectrum and a VFR algorithm with an

7
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average frame rate of 30 frames/s, we used a Markov chain model

of the sequence of quantized spectra. Since we expect that

consecutive speech spectra to be statistically dependent, the

Markov chain model, which uses the past to predict the future,

can be used to reduce the bit rate required for coding the

spectrum. A first-order chain reduced the entropv from 6 bits to

4.75 bits/transmission. Since this bit rate was still too high

for the VLR vocoder, we needed to estimate a higher order Markov

chain. To minimize the amount of data required to estimate high

order models, we proposed two new Markov models. The variable

resolution model was most effective and had an entropy of 4

bits/transmission when 256 states were used in the model. This

work is described in Section 4.

1.4 Segment Vocoder

Vector quantization is an attractive method for quantizing a

set of parameters when these parameters are statistically

dependent (beyond correlation). We show in Section 3 that the

"O LARs of a single frame of speech are statistically dependent.

Also, the variable resolution Markov model, described in Section

4, demonstrated that consecutive spectra of speech are highly

dependent. To exploit the above statistical dependencies, we use

a vector quantizer for quantizing all parameters that represent

8S -
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several consecutive frames of speech. These consecutive frames

define a segment and the corresponding quantizer is called a

segment quantizer. The segment vocoder which is described in

Section 5, uses segment quantization to vocode speech at an

average bit rate of 15, b/s. Our work in the phonetic vocoder

and its variations guided our choice in defining a segment. We

required the segment to have an average duration comparable to a

phoneme's duration. We used a segmentation algorithm similar to

phonetic segmentation algorithms. One of the most successful

segmentation algorithms that we used, generated segments that are

analogous to diphones. The corresponding segments were defined

from the middle of a spectral steady state to the middle of the

following steady state.

As we demonstrate in Section 5, the gain track and voicing

pattern of a segment are highly dependent on the spectral

sequence of the segment. If two segments are spectrally close

then they generally have the same gain track and voicing pattern.

Hence, these are not transmitted in the segment vocoder, the gain

track and voicing pattern of the template is used at the

receiver. Only a level adjustment of the gain track is

transmitted for each segment.

We describe in Section 5, the segment vocoder and the

techniques used for segmentation, segment quantization, and gain

and pitch quantization.

9
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1.5 Multispeaker Synthesis

In both the phonetic vocoder and the segment vocoder, the

output speech sounds like the speaker used to generate the

templates. To make the output speech sound more like a new

vocoder user, we investigated several methods for transforming

the template data base. The transformation was to be determined

using a small amount of training data from the new speaker.

The basic procedure was applied on the phonetic. synthesis

part of the phonetic vocoder. We required the speaker to speak

for a period from 20 to 60 seconds. The speech from the new -1

-peaker was analyzed to extract several parameters which were

used to transform the diphone templates to make the phonetic

synthesizer sound more like the new speaker.. The parameters used 4

for the transformation are the average vocal tract length of the

new speaker and the long term average spectrum for voiced,

unvoiced and silence portions of the new speaker's speech. The

use of these parameters is described in Section 6. We have found

the speaker transformation to be effective particularly when the

new speaker sounded quite differently from the database talker.

1!
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2. PHONETIC VOCODER

During the first year of this contract, we performed several

experiments, with the phonetic vocoder approach to very-low-rate

vocoding. In this Section we will first review briefly the basic

operation of the phonetic vocoder. Then, we will describe those

experiments performed in an effort to make the phonetic

recognition performance high enough such that the resynthesized

speech was intelligible.

2.1 Methods Used

Figure 2.1 shows a block diagram of the phonetic vocoder.

This figure shows that the input speech is analyzed to produce a

set of phonemes, phoneme durations, and pitch values. A phoneme

and its associated value of duration and pitch is called a

"triplet". Speech rates are typically about 12 phonemes per

* second, and since each triplet can be encoded into 8 bits, the S

data rate in the transmission channel is about 100 bits per

second. Once the triplets are decoded at the receiving end, a

phonetic synthesizer reconstructs the original speech.

The basic model of speech that we chose to use in the

" phonetic vocoder is the diphone model. A diphone is defined as

I "
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CHEC TANNELSSION APHONS PHNTC SYNTHESIZED

ANALSISDURAION CHANEL DURAION PHOETI

Fig. 1.Very-low-rate (VLR) phonetic vocoder. 7
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the region from the middle of one phoneme to the middle of the

next phoneme. Thus, the diphone model directly represents much

U of the coarticulatory effect of one phoneme on the adjacent

phonemes. Both the analysis and synthesis components of the

phonetic vocoder require a large database of diphone templates.

The phonetic synthesis program translates a sequence of

phonemes into the corresponding diphone sequence, and then

constructs LPC parameter tracks by concatenating the diphone

templates for those diphones. The program also uses appropriate

time-warping, and smoothing algorithms that are designed to

maximize the naturalness of the output speech. 0

The phonetic recognizer uses the same diphone model to

recognize the sequence of phonemes. The diphone templates are

compiled into a network that constrains the sequence of diphones. .

That is, diphone A-B can only be followed by a diphone that

starts with phoneme B. The diphone network consists of nodes and

U directed arcs. An example of a simple network is shown in Figure .

2.2. There are two types of nodes: phone nodes and spectrum

nodes. The phone nodes (shown as labelled circles) correspond to

the midpoints of the phones; there is one such node for each

phone. These phone nodes are connected by diphone templates.

Each diphone template is represented in the network as a sequence

of spectrum nodes (shown as dots). When two or more consecutive

13 '
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spectra in the original diphone template are very similar, they

are represented by a single spectrum node in the network. The

open dots indicate the first spectrum node in the original

diphone template that is at or past the labelled phone boundary.

Note that, in Fig. 2.2, the diphone template Pl-P2 is distinct

from the template P2-Pi. Also note the possibility of diphones

of the type Pl-Pl. The network allows for multiple templates

going from one phone to another (e.g., P2-Pl). Branching and

merging of paths within a template is also allowed (e.g., Pl-P3).

The network also allows the specification of diphones in context.

The phone node P4/&P3 represents the phone P4 followed only by

P3. Thus the template P2-P4/&P3 is different from the

unconditioned template P2-P4. Finally, the network allows for

sequences of diphones, for example in clusters, to be treated as

*an independent unit altogether (Pl-P5*-P3). The generation and

training of the network is discussed below.

Each spectrum node in a diphone template consists of a model

for both the spectrum and the duration. The spectral model is

represented by means and standard deviations for all 14 log-area-

ratio (LAR) coefficients and gain. The duration of a node is

" -defined as the number of frames of input aligned with the node.

Each node contains a smoothed probability density of the duration

of the node based on actual alignments during training. Each ]

14
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Fig. 2. Example of diphone template network for five phonemes.
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spectrum node has an implied self-loop, so that the diphone

matcher (which will be discussed below) can align several input

frames to one spectral node.

The network matcher uses a stack-based dynamic programming

algorithm which attempts to find the sequence of templates in the

network that best matches the i-,put according to a scoring

algorithm. This score includes components due to the spectrum

(LAR's), the durations, and also the probability of the

associated phoneme sequence. In our feasibility study for this

project, we found that by inclusion of first order phoneme

statistics (probability of phoneme pairs or diphones) into the

recognition process, phoneme identification accuracy improved by

15%. The main effect of the inclusion of phoneme pair

probabilities in this program was that it greatly reduced the

number of extraneous phonemes inserted into the output, but did

not substantially change the probability of the correct phoneme

appearing in the output.

The basic operation of the program begins by updating each

"theory" by the addition of the newest input frame. A theory

consists of a detailed account of how a sequence of input frames

is aligned with the network, along with a total score for that

correspondence. Each old theory will generate several new

W theories. First, a theory in which the new input frame is

16 4
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matched against the same network node as the previous input

frame. Second, a theory for each possible following node in the

* network. And third, for each pair of two following nodes. After

all old theories have been expanded into new ones, the program

K keeps all theories that are within a score threshold of the best

theory ("beam search"), and also limits the number of theories to

a maximum number ("bounded breadth search") . All theories are

- kept in a tree, such that it is possible to determine, at any

time, whether all theories have a common beginning. When they

do, that part of the theories that agree can be output. Thus,

there is a short lag (an average of 30 frames) between the input

*and the output of the chosen answer. We have found that

preserving several hundred theories in the stack seems to result

in an answer that has a score close to the score obtained with a

-much. larger stack. Therefore, we conclude that the pruning is

* not often eliminating theories that would eventually score better

than theories that are kept. 4

2.2 Training the Network

Much of the work on the phonetic vocoder was devoted to

developing different mlgorithms for training the network model

f or speech. The first method of updating the network that we

-implemented relies on augmenting the network with additional

17



Report No. 5231 Bolt Beranek and Newman Inc.

diphone branches. In this procedure, we use the transcription of
--- I 4

the training data, together with the network compiler program, to

create new alternate diphone templates. Each of the templates is

independent, except that all the templates for a single diphone

start and end at the same phoneme nodes.

The second method is more automated. The automatic training

capability of the matcher allows the researcher to input to the p

matcher a sentence that has been phonetically transcribed. The

input transcription includes both phonetic labels and may include

the time of each phoneme. The phoneme may be left unspecified P

where desired, and the times may be specified as ranges if the

best boundary location is not clear. The matcher then finds the

best alignment (and corresponding score) of the input utterance

against the network under the constraint of the transcription.

Once completed, the matcher uses the input utterance to "train"

the network. Those portions of the input utterance that are

similar (closer than a threshold) to the path in the network that

it was aligned with are used during the training procedure by

updating the statistics of that closest path in the network to I
include the input utterance parameters. The statistics of the

network path that are modified include the the means and

variances of the LARs and the PDFs of the frame durations. The4 p

remaining portions of the input utterance, those that are not -

-1
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very similar to the aligned path in the network, are used to add

alternate branches to the network. The parameters of thoseT

portions of the input utterance are used to create new branches

of the network. By this procedure of updating network statistics

and augmenting the network with new branches, we ensure that the

network can match any speech from the training data within the

specified error threshold. However,,the amount of training data

- required such that the network will have sufficient paths and

accurate statistics to model arbitrary input utterances well may

be excessive.

There are three differences between the augmentation

algorithm and the automatic training method:

1. In the augment mode, the entire diphone is always added
as an alternate path.-

2. In augment mode, the compiler assumes that the diphone
boundary is at the middle of the labelled phone (which
is a good heuristic) rather than letting the program
assign the diphone boundary where it chooses.

3. In augment mode, there are no a priori probabilities
assigned to paths. This differs from the automatic
training' mode where several paths may be "averaged"
together. These a priori probabilities, however, are
not currently used by the matcher.

To evaluate the above training methods, we "trained" the -

network on several sentences using each training method, and then

tested the updated (trained) network using several other
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sentences. A comparison of the results using the training

algorithm and augmenting algorithm showed 8% better phoneme

recognition with the augmentation method. As a result of this

experiment, we chose to use our available training data with the

augment algorithm.

2.3 Recognition Improvement with Training

As mentioned above, it is necessary to train the network on

natural speech, so that it contains a model for any of the many

ways the different diphones can be pronounced. We recorded,

digitized, and carefully transcribed 255 sentences of varying

lengths. This produced about 4200 phonemes of training data. We

then divided the training speech into three sets of apprQsi':ately

1400 phonemes each. These were used incrementally to produce

three diphone networks with different numbers of alternate paths.

Thus, there were four different diphone networks. The first

* network had just one sample of each diphone taken from the

- phonetic synthesis database of nonsense utterances. . We shall

call this network "untrained." For each of the other three

diphone networks, we determined the total number of diphones used

to train it, the number of unique diphones used to train it

(i.e., the number of diphones for which there was now at least

one additional template), and the percentage of correctly

recognized phonemes.
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The test material consisted of 10 new sentences from the

Harvard phonetically balanced list. These sentences had not been

used in training. The total number of phonemes in the test 9

sentences was 234.

Figure 3 shows the recognition performance as a function of

the amount of training. Performance is given as a function of

each of the two parameters described above: the total number of

training diphones and the number of distinct training diphones.

As the figure shows, the recognition performance improves

considerably with additional training, improving from a

recognition accuracy of 36% correct with no training (the

"untrained" network) to 61% correct with 3000 total diphones of

training). However, as the last point indicates, further

training by the network augmentation method does not seem to make

any significant improvement.

Careful examination of the training data indicated that even

though only approximately 1200 of the 2800 possible diphones in

the network had been augmented by the training with one or more

alternate paths, over 90% of those diphones appearing in the test

sentences were of diphones that had been augmented by additional

paths. Thus, adding additional paths to diphones that were not

needed in the test would not help at all. We looked at the

subset of phonemes in the test for which two conditions were met:

21
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Fig. 3. The effect of training on phoneme recognition accuracy.
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(1) the matcher had correctly identified both adjacent phonemes,

and (2) the two diphones that span the phoneme had been trained.

That is, if the correct phoneme string in the test sentence were

ABC

we only considered phoneme B if both A and C were correctly

recognized, and the diphones A-B and B-C had been augmented by

training. In these cases, we found that 85% of the phonemes were

correctly recognized. This result indicates that the matcher

tends to get long strings of phonemes correct. When a phoneme is

incorrectly identified, it will usually be part of a string of

several contiguous, incorrectly identified phonemes. It also

suggests that if there were much more training, the performance

might improve considerably. Unfortunately, this may be an

inherent quality of a matcher such as ours that finds a globally

optimal scoring path.

2.4 Conclusion

The primary conclusion from this project is that this method

of VLR vocoding has the possibility of achieving very low data

rates, but will need very large amounts of manually transcribed

data before the phoneme recognition rate is high enough to make

the output speech intelligible. Another problem with the use of

the phonetic recognition and resynthesis for a vocoder was that
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if we had multiple templates in the recognition network, but only

one template for each diphone in the phonetic synthesis program,

the output speech was no longer guaranteed to be spectrally close

to the input speech. This realization prompted two experiments,

* which eventually led to the design and implementation of the

Segment Vocoder, which will be discussed in a later Section.

2.4.1 Allophone Vocoder

To increase the intelligibility of the phonetic vocoder we

considered transmitting extra information with each- phone,

specifying the identity of the actual diphone template that

matched best by specifying in each case. Assuming 12

phones/second, and 8 templates/diphone, this would require only

an additional 12x3=36 b/s. We call this vocoder an "Allophone
I

Vocoder." An allophone is one of many possible variations in the

way of pronouncing a phone. Although the diphone template

network is identical to that used for the phonetic vocoder, the

allophone vocoder does not use the many-to-one mapping discussed

above. The vocoder synthesizes the spectral sequence -

consistent with the network constraints - that is closest to the

input spectral sequence, according to the distance metric used.

We found the output speech from the allophone vocoder to be

substantially more intelligible than that from the phonetic
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vocoder. However, due to the constraints of the network, the

"nearest" spectral sequence chosen was often- quite far from the -w

input sequence, resulting in some intelligibility problems.

To further improve the intelligibility of the vocoded speech

we needed to decrease the error between the input spectra and the

synthesized spectra. The network constrains the sequence of

diphones in such a way that taken together, the d-iphones form a

phone sequence. A diphone template ending with a particular

phone can be followed only by one of the diphone templates that

begins with that same phone.

2.4.2 Diphone Vocoder

1"o decrease the spectral match error (still using the same

set of diphone templates) we relaxed the constraint on the

sequence of diphone templates that was imposed by the network.

Thus, any diphone template could be followed by any other diphone W

template. This doubled the number of bits needed to transmit the

sequence of diphone templates, bringing the total transmission

rate up to about 200 b/s. (The source information still requires

approximately the same number of bits.)

The result was that the spectral error decreased by 20% and

the intelligibility improved to the point where most listeners W
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understood practically all the words and felt that this diphone

vocoder could result in a usable speech transmission system.

Although the sequence of diphone templates transmitted by

the diphone vocoder does not necessarily correspond closely to

the "ideal" phonetic sequence, the spectra being synthesized are

close enough to the input spectra so that (as with a conventional

LPC vocoder) the human listener can make sense out of the speech.

In other words, unless the required transmission rate is so low

that only recognition methods are practical (below 130 b/s), it

is more efficient, at this time, for the vocoder to simply do the

best possible job of synthesizing a spectral sequence that sounds

like the input sequence and leave the phone recognition to the

human listener.

The diphone vocoder still has one significant drawback: the

large amount of human effort required to transcribe a large data

base of diphone templates. In the following Section we discuss a

method that avoids this problem while maintaining all the

advantages of the diphone vocoder.

26
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3. VECTOR QUAITIZATION

3.1 Introduction

We describe in this chapter several methods for quantizing

the log-area-ratio parameters (LARs) used to represent a single

frame of speech. These methods were investigated in order to

determine which methods will be most effective for reducing the

bit rate of an LPC vocoder from 2400 b/s to the range from 100 to

200 b/s.

We compared several clustering algorithms for vector

quantization. We found that a non-uniform binary clustering

algorithm yields an acceptable performance with a significant

reduction in the computational load over the optimal K-means

algorithm. We also compared vector quantization to optimal

scalar quantization of the LARs. We found that a scalar

quantizer required 15 bits for quantizing 14 LARs whereas the

vector quantizer required 10 bits for the same quantization 6

error, a savings of 30% in bit rate. These results and several

others will be discussed in more detail in the following

Sections.

27-
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1

3.2 Optimal scalar Quantization

In the Government's LPC-10 standard vocoder, each LAR

parameter is quantized separately using a uniform quantizer. In

this Section, we describe the optimal scalar quantizer for n

jointly gaussian parameters. The performance of the optimal

scalar quantizer will be compared to that of a vector quantizer

for quantizing the LARs representing speech in Section 3.4.

The optimal scalar quantizer for a set of n parameters,

represented by a vector x, minimizes the total mean square

quantization error of all parameters for a given number of bits

b. The n parameters are assumed to be jointly Gaussian. The

optimal scalar quantizer consists of the following three steps:

i) Parameter decorrelation

ii) Bit allocation

iii) Scalar quantization

We describe each of these steps below:

Parameter Decorrelation: Let Q be the matrix whose columns

are the eigenvectors of the covariance matrix C of the Gaussian

vector x. The new parameter vector y = Q'x will have

uncorrelated components, where Q' is the matrix transpose of

28
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Q. The transformation by Q' corresponds to a pure rotation of the

vector x.

Bit Allocation: The second step is to allocate the given b

bits to the components of the uncorrelated vector y. In [1] we

showed that the optimal bit allocation is such that each

component gets the number of bits necessary for the resulting

quantization error to be equal for all components whenever

possible. In that case, the savings due to bit allocation is:

n4.1
A =2 10l92(a)9lo(-

where a is the arithmetic mean of the variances of all the

components of Y and g is their geometric mean.

Scalar Quantization: The third and final step is to perform

the scalar quantization of each of the components {yi1ni.1 using

the corresponding allocated bi bits. Here one simply uses a Max

quantizer (2] designed for each component.

In the application of optimal scalar quantization to the

LARs, one estimates the covariance matrix C from a training set
6

- of observed LAR vectors of speech. Then using the eigenvector

matrix Q, the LAR vector x is rotated to obtain the uncorrelated

vector M-
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Given b bits one determines the bit allocation and the n Max

quantizers by the following process consisting of b steps:

Initially all n components have zero bits allocated
to them and the quantization error is equal to their
variances. For each bit from 1 to b, we do the
following operations.

We allocate an additional bit to each component and
redesign the n Max quantizers with the new bit
allocation (i.e., using one more bit). Then, we
determine the component that has to largest decrease
in quantization error due to this additional bit.
The additional bit is therefore allocated to this
component.

The above process is repeated b times until all b
bits are allocated. At the end of this process we
will have n Max quantizers each using bi bits
such that a total b bits are used in quantizing the
n LARs.

The above process is optimal for jointly Gaussian random

variables. In that case, one can show that the n Max quantizers

differ only by a scaling factor. Since the LARs of speech are

not jointly Gaussian, the n Max quantizers will differ by more

than a scaling factor. In this case, we expect that the resulting

scalar quantizer to be near optimal. We have found that the

eigenvector rotation saves 3 bits in quantizing the 14 LARs. For_

a typical LPC vocoder operating at 2400 b/s, nearly 40 bits are

used in quantizing the LARs. In this case the savings due to the

30
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rotation is not very important. But for the very-low-rate

vocoder, we expect to use 10 to 15 bits for the LAR vector so

r that the savings of 3 bit due to the eigenvector rotation is

necessary. We will compare optimal scalar quantization to vector

quantization in Section 3.4.
U

3.3 Clustering of Speech Spectra

Since we expect the LAR parameters of speech to exhibit a

statistical dependence that is beyond correlation, we evaluated

the use of vector quantization for quantizing the LAR vector.

* mThe vector quantizers that we evaluated were all based on the

application of a clustering algorithm on a training data set of

observed LAR vectors of speech.

UAn M-level, n-dimensional vector quantizer is defined by a

partition P={Ci;i=I,M} of the space of all possible input vectors

into M disjoint regions, each denoted by Ci. A template vector

zi is also defined for each region Ci. The input vector x is

quantized into the template zi if the vector x belongs to the

region Ci .

A non-negative distortion measure, denoted by d(x,z), is

used as an objective measure of the loss in accuracy in

representing an input vector x by a template z. An optimal
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vector quantizer must satisfy the following two necessary

conditions:

Condition 1: Minimum distance classification.

The shape of the regions C i must guarantee that an input

vector is quantized to the nearest template.

x E C d(x,z i) d(x,zj) for I-jM 42

For the Euclidean distance measure the regions are bounded by

hyperplanes.

Condition 2:Template Selection

The templates of an optimal vector quantizer must minimize the

average distortion of their corresponding regions, i.e., the

template zi of the region C i must minimize

minimize d (x,z) p (x) dx 4.3
z C.1

where p(x) is the probability density function x and the integral

is over the region Ci -

The above two conditions are necessary but not sufficient
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for an optimal vector quantizer. These two conditions have been

used to define an iterative clustering algorithm, called the K-

means algorithm, that has been used to design vector quantizers

for the LPC models of speech.

-sgl

3.4 K-Means Algorithm

The K-means algorithm has been extensively used in pattern

recognition as a clustering algorithm. Using a training set of

observed LAR vectors, the K-means algorithm is a hill climbing

algorithm that determines a set of K clusters (in our case K=M)

that minimizes the clustering criterion. Each cluster will be

represented by a single template. We use the average mean square

quantization error as a clustering criterion.

The algorithm is described in detail in [3]. We present

below a brief description of the K-means algorithm when the

Euclidean distance on LARs is used:

1. Choose by some adequate method an initial set of M
templates.

2. Classification: Classify all vectors in the training
data set to the nearest template. A set of M clusters
in thereby obtined where each cluster consists of all .
vectors classified to a given template.

3. Template updating: For each cluster a new template is
obtained by averaging all vectors in the cluster.

33

iU



Report No. 5231 Bolt Beranek and Newman Inc.

-i

4. Repeat steps 2 and 3 until the algorithm converges.

The algorithm is guaranteed to converge to a local minimum of the

mean square error. We use a binary clustering algorithm,

described in the following Section to determine a set of initial

templates. In this case, the K-means algorithm converges in few

iterations and usually 5 iterations are sufficient.

The major disadvantage of the K-means algorithm is the large

computational load required. To quantize an input vector, M

distance calculations are needed where M=2 band b is the number

of bits used to transmit the LPC spectrum. Typically we use 10

bits for the spectrum for an LPC vocoder that operates between

200 and 400 b/s. Hence, 1000 distance calculations are needed

for each input spectrum. In the next Section, we describe a

binary clustering algorithm that only requires 20 distance

calculations with a minimal increase in the quantization error.

The computational load is reduced by a factor of 50. The binary

clustering algorithm requires 2 b distance calculations instead of

2b required for the K-means algorithm.

3.5 Binary Clustering

To avoid the computational load the K-means algorithm, we

used a hierarchical clustering algorithm. We present two binary

clustering algorithms.
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3.5.1 Uniform binary clustering

The binary clustering is applied sequentially in the

following manner on a training data set. Initially, the training

data set is divided into two clusters using the K-means algorithm

(where K=2). Then, each cluster is further subdivided into two

clusters. This process can be represented by a uniform binary

tree where the root node corresponds to all the training data.

The two sons of the root node. correspond to the first two

clusters. Then at each level, - each node will have two sons

corresponding to the clusters obtained by subdividing the cluster

of the parent node. The process of subdivision is continued

until the desired number of clusters is obtained. The K-means

with K=2 is used for every subdivision.

o To complete the specification of the binary clustering

algorithm, we need to describe how the initial set of two

templates is obtained when the K-means algorithm is used to

subdivide a given cluster into two clusters. We used theS

f ollowing procedure. The mean vector of the parent cluster and

the LAR component with largest variance are determined. Then, a

hyperplane perpendicular to the component with largest variance

and going thru the mean is used to divide the cluster into two.

The means of the resulting two clusters are used as the initial

set of two templates for the K-means ([K-2) algorithm. For V

Gaussian clusters, this initial division is optimal.
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4.5.2 Non-uniform binary clustering

For each additional bit, the uniform binary clustering

algorithm divides all the clusters at a given depth on the binary

tree into two clusters. This uniform binary subdivision divides

all clusters whatever their contribution to the quantization

error, small or large. A more effective algorithm is to

adaptively divide the clusters that have the largest contribution

to the quantization error while not subdividing those that have

the smallest contribution.

The non-uniform binary clustering algorithm divides

sequentially the cluster that has the largest contribution to the

mean square error.This sequential process is performed until the

required number of clusters is obtained. In general, the

resulting binary tree is non-uniform, i.e., some clusters have

more subdivisions than others. We expect this algorithm to have a

smaller quantization error than the uniform binary for the same

bit rate. We compared the performance of these two algorithms on

a database of 14-dimensional LAR vectors of speech.

Using the mean square error on LARs, we compared the uniform

binary clustering, non-uniform binary clustering and the K-means

clustering algorithms. We have found that the non-uniform tree

saves 0.5 bits over the uniform tree for the same mean square

-3
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error. The mean-square error of the non-uniform binary
clustering and the K-means algorithm for a single speaker

database is shown in Fig. 3.1. The non-uniform tree requires

only 0.5 bits more than the K-means algorithm for the same

quantization error. The small increase in bit rate of the non-

uniform binary clustering as compared to the K-means algorithm isU

acceptable given the large savings in computation by factor of 50

- when a 10- bit codebook is used. We now routinely use the non-

uniform binary clustering for designing our VLR LPC vocoders. In

figure 3.1, we also show the mean-square error of the non-uniform

binary clustering on an all male multispeaker database. We find

* that an additional 0.7 bits are needed for the multispeaker

quantizer to have the same single speaker quantization error.

For the non-uniform binary clustering, we have used several

criteria for selecting which cluster to subdivide next. We

describe our results on this topic in the next Section.

3.5.2 Cluster Splitting Selection

The criterion used for selecting which cluster to subdivide

next in the non-uniform binary clustering can be varied as

described in the (3]. We found that choosing the cluster which

has the largest mean square error for further subdivision yields

the best vocoded speech quality. We note that this vocoder has a
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Fig. 4. Mean-square quantization error for non-uniform clustering,
K-means clustering for a single speaker data.
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slightly higher quantization error (+19%) than the optimal non-

uniform binary clustering described in the previous paragraph.

The optimal non-uniform binary tree chooses the cluster with the

largest total swared exror given by Ne2 for further subdivision.

The mean square error of the cluster is given by e2 and N is the

- number of vectors in the cluster. However, the perceptual

difference in quality is rather small.

3.5.3 Distance Measures

We have compared the Euclidean distance on LARs with the

* Itakura-Saito distortion measure as described in [3] using the K-

means algorithm. We compared two vocoders that used 8 bits for

coding the LPC Spectrum of speech without pre-emphasis. Both

vocoders used unquantized voicing, pitch and gain. The speech

quality and intelligibility seemed to be similar for both

vocoders in an informal listening test. Recently a more

comprehensive study showed that the two distortion measures are

quite similar in performance. We also found that using

preemphasis with the Euclidean distance measure reduced the

speech quality when compared with the Euclidean distance on LARs

of non-preemphasized speech. The degradation can be

characterized as an increase in roughness.

Finally, for the above distance measures we found that the
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template vector of a cluster is obtained by an averaging process

in the right domain as presented in [1l. For the

*i Euclidean distance, the template is the average of all LAR

vectors in a cluster. For the Itakura-Saito distance a weighted

average of the autocorrelation matrices of all LPC spectra in a

cluster is used to determine the template. The weight is the

* inverse of the prediction gain V p as discussed in [31.

3.6 Comparison of Scalar and Vector Quantization

The major justification for using vector quantization

instead of scalar quantization for speech compression has been

based on the expected superior performance of the former method

due to the statistical dependence of the spectral parameters of a

frame of speech. We have seen that parameter correlation does

not contribute to a difference in performance between vector and

optimal scalar quantization. Hence, we have to determine if

speech exhibits any statistical dependence other than correlation

in order to justify the use of vector quantization. To estimate

the savings in bit rate due to statistical dependence, we

compared a vector quantizer with an optimal scalar quantizer for

a data base of speech spectra represented by 14 LARs. The

* Euclidean distance was used to measure the quantization error.

The mean square quantization error for both quantizers is shown

40
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in Fig. 3.2. The top horizontal axis shows the cumulative bit

allcoation for the eigenvector that is receuving the additional

bit. We found that the vector quantizer was better than the

scalar quantizer. The mean-square error of the 10-bit vector

quantizer was equal to that of the 15-bit optimal scalar, a

savings of 5 bits.

The advantage of vector quantization over optimal scalar

U quantization (a gain of 5 bits for the same mean-square error) is

most significant for very-low-rate vocoding of speech. The size

of available data sets limits of the bit rate of optimal vector

quantizers to about 10 to 12 bits. For higher bit rates,

suboptimal vector quantizers such as cascaded clustering which is

described below may be used. However, the resulting loss in S
optimality reduces significantly the advantage of vector

quantization over optimal scalar quantization. When we compared

the two methods (cascaded and scalar) at 30 bits, we found

cascaded vector quantization to be less robust thin optimal

scalar which resulted in the same performance for botn methods.

Therefore, at these higher bit rates, a scalar quantization

w methods would be most effective.

Recent published results [6] using the Itakura-Saito

distance claim an advantage of 14-bits for vector quantization

over scalar quantization. This larger gain may be explained by

two factors:

41

U



Report No. 5231 Bolt Beranek and Newman Inc.

2 , (I e 2(1) e ,(2) e2( ) 3 ( ) e5 ) e()3

20

16

14 . Scalar
14

Vector

- 5 bits

12l
*24 6 a 10 12 14 16 Di ts

Fig. 5. Comparison of the mean-square error of vector quantization - I
and scalar quantization. Ei(j) is the ith eigenvector
with an allocation of j bits.
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1. The scalar quantizer used for the comparison was the
* minimum deviation quantizer 171. This quantizer is

suboptimal for the Itakura-Saito distance used for
vector quantization. This distance measure is not S

Iseparable into components so that a scalar quantizer
can be designed to get the minimum distortion.

2. The parameters used for scalar quantization were not
decorrelated. We have determined that the eigenvector
rotation of the LARs saved 3 bits.

Even though the gain due to vector quantization is less than

* originally published, the reduction of 30% in the bit rate is

important for the VLR vocoder and the additional complexity can

be justified for this vocoder.

*3.7 Cascaded Clustering

The above clustering algorithms (K-means and binary

* clustering) require an amount of training data that grows

exponentially with the bit rate. For example, one hour of speech

- * data is sufficient for no more than 11 to 12 bits of clustering.

The above algorithms can be described as a one-stage algorithms:

an input vector is quantized in one step.

To reduce the amount of training data required (in fact, we

also reduce the computational load), we perform the clustering in

two stages. Initially, a clustering (using either K-means or

binary clustering) is performed using r bits. We refer to this
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first stage as an r-bit stage. Then, each vector in the training

data is quantized to the nearest template and the Quantization

error vector is computed. The quantization error vector is

called a deviation vector. The data set of all deviation vectors

is used to perform a second stage of clustering of t bits (t-bit

stage). The two sets of templates are used as a vector quantizer

in the following cascaded manner. First, the nearest template to

an input vector form the r-bit stage is determined. Then, the

deviation (or quantization error vector) is quantized using the

templates from the second t-bit stage.

The bit rate of cascaded clustering is r+t bits, yet only

2r+2t templates have to be estimated instead of 2t+r. Therefore,

both the amount of training data and the number of distance

calculations in quantization are significantly reduced (both are

proportional to 2r+2t instead of 2r+t.  By requiring a smaller

training set and less computation than the above clustering

algorithms (K-means and hierarchical clustering), the cascaded

clustering method has a larger quantization error for the same

bit rate. This suboptimal performance can be predicted by the

following model.In cascaded clustering, we group all deviations

from all the clusters together. Therefore we are implicitly -

assuming that all clusters of the first stage have the same
.1

deviations, i.e., all clusters have the same statistics or shape.
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In other words, we are assuming that we can model the statistics

of each cluster by the average statistics over all clusters.

Since this is generally not true, cascaded clustering is

suboptimal. Basically, by combining the deviations we are

reducing the statistical dependence gain. To partially improve

the performance of cascaded clustering, we increased the

similarity of the clusters by using a principal component

decomposition of the deviations before combining them. We

represented the deviations of each cluster along the principal

components of the corresponding cluster. Then we grouped all

deviations. This corresponds to rotating the clusters so that

their principal components align before superimposing them.

We compared several cascaded clustering algorithms on speech

data, represented by 14 LAR vectors, using the Euclidean

distance. Fig. 3.3 shows the mean square error of the different

algorithms versus the bit rate. The 1-bit stage curve

corresponds to the performance of cascaded clustering using

several stages where each stage corresponds to 1-bit clustering.

After 5 stages (or 5 bits) the error decreases at a rate of 6

dB/average bit, which would be obtained with optimal scalar

quantization. Therefore, the statistical dependence is reduced

to correlation by merging deviations for five stages. The

performance of 1-bit stage cascaded clustering can be improved by

5
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using an eigenvector rotation on the cluster as explained above.

The gain due to the rotation is 2 bits, i.e., the asymptotic

behavior similar to scalar quantization is delayed to seven

stages. Using a 4-bit stage instead of a 1-bit stage with

rotation improves performance. However, at the third 4-bit stage

(or at 8 bits of cascade clustering) the slope reaches the 6 dB

limit of scalar quantization. Hence, one should use the largest

bit allocation to the first stage. We also have found that if we

use 10 bits for the first stage, the performance of the second

stage is equivalent to optimal scalar quantization. In that

case, an optimal scalar quantizer may be used for the second

stage instead of clustering, which indicates that no statistical

dependence other than correlation is exhibited by the deviations.

As we reported in Section 3, a cascaded clustering vector

quantizer (10 bit vector quantizer for the first stage with a 20

bit scalar quantizer for the second stage) has the same

performance as our optimal 30 bit optimal scalar quantizer.

Therefore, at higher bit rates an optimal scalar quantizer would

be preferred to cascaded clustering due to its simpler

implementation.

The binary clustering vector quantizer has been the most

effective single frame quantization method for vocoding speech

from 300 b/s to 800 b/s. Typically, 10 bits per transmission
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Fig. 6. Mean square error of cascaded clustering.
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1

have been used for the spectrum. By varying the number of

transmissions per second and the bit rate of pitch, gain, and

voicing, we can vary the vocoder bit rate. AT 400 b/s the

quality of the vocoded original is very close to 2400 b/s for a

single speaker system.

We also implemented a VLR vocoder that uses a 6 bit codebook

for the LPC spectrum and a VFR algorithm with an average frame

rate of 30 b/s. Pitch and gain were not quantized. The output

speech of this single speaker vocoder was quite intelligible.

This vocoder was used for the Markov chain models of speech

described in the following Section.

-
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4. MARKOV CHAIN MODELS OF SPEECH

4.1 Introduction

We have described in the previous chapter several methods

U for quantizing and transmitting the spectral parameters of a

single frame of speech. We have found that a vector quantizer

uses the statistical dependence of the LAR parameters of a singly

frame to minimize the required bit rate for vocoding speech. In

particular, intelligible speech can be vocoded for a single male

talker by using a 6-bit spectral codebook with a VFR algorithm
U

that uses an average from rate of 30 b/s. The bit rate of 180

b/s for the spectral information alone was too high for the goal

of a very-low-rate vocoder operating in the range of 100-200 b/s.

To reduce the bit rate of the spectral information in the

above vocoder, we investigated the use of a Markov chain to model

the statistical dependence of consecutively transmitted spectra, 0

i.e., the output of the VFR algorithm was modeled as .a.Markov

chain with an alphabet of 64 (6 bits) symbols. We evaluated 3

basic models: a first order Markov chain, a variable order Markov

chain and a variable resolution Markov chain. We describe below

each model. Then we present our simulation results.

If a fixed length code is used in coding the output of the
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VFR algorithm, then 6 bits will be used at each transmission

point. If a variable length code (entropy coding) is used, the

bit rate could be reduced to the entropy of the VFR transmission

sequence of 5.85 bits. We did not implement any variable length

encoding, however we used entropy to compare the bit rate

reductions of the several Markov models examined.

4.2 First Order Markov Chain

A Markov chain with an alphabet of M symbols (M spectral

template) is characterized by a MxM transition probability matrix

[pij]. The transition probability Pij is the probability that

symbol j will follow symbol i. The M transition probabilities

can be estimated by counting the observed transitions in a large

database. For M=64 we need to estimate 4096 probabilities.

Requiring an average of 10 observations for each probability, we

will need 15 minutes of speech. Using a 1 hour database, the

entropy of the first order chain was found to be 4.75. Hence,

entropy coding and the first order model will save 1.1 bits at

each transmission.
* q

A second order chain uses the two previous symbol to predict

the current symbol. We expect a 2nd order chain to have a lower

entropy than a first order Markov chain. However, the amount of
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B -
data needed to estimate the 2nd order model is M times larger

than that of the first order chain which would require in our

case 16 hours of speech. We only have a maximum of one hour of

speech. Due to the limited amount of available training data, we

introduced the variable order and variable resolution Markov -a

models [4).

4.3 Variable Order Markov Model

The set of symbols that is used to predict the following

symbol is called a state. For a first order Markov chain there

Vare M states (M=64 in our case), for a second order chain there

are M2 states (4096 states) , where each state corresponds to a

pair of consecutive symbols. In a variable order Markov chain we

do not estimate the transition probability distribution for each

state of a kth order Markov chain. Instead we determine the set

of the N most probable strings of symbols of any length up to

k. These are considered as the states of the Markov chain. Since 0

these will in general have different lengths, the states of our

Markov model will correspond to states of Markov chains of order

from zero to k. We call this model the variable order Markov

chain. The number of states N is determined by the available

training data set. For a model with N=100 states, the entropy

was 4.5 bits as compared with the entropy of 4.75 of a first
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order chain which has 64 states. In this case, the variable

order chain had 57 first order states. The states of order 2,3,

and 4 were 36,5, and 2, respectively. This variable order chain

had quite similar states to the order chain which explains the

similarity in their entropy rate.

4.4 Variable Resolution Markov Model

Given a fixed amount of training data, we wanted to use as

many high order states as possible. Since the total number of

states is fixed for a given amount of training data, we used the

idea of variable spectral resolution to increase the average

order of the states of our Markov model. The idea of a variable

resolution Markov model can best be explained by an example. A

state string xn_2xnlxn which is a third order state used to

predict the next symbol xn+1 , is represented by using the

following three alphabets. For the most recent symbol xn, it

uses an alphabet of size M0 symbols, for the previous symbol xn_ 1

it uses a an alphabet of M1 <M0 symbols thereby using less

spectral resolution to represent that spectrum. Similarly, for

the oldest symbol xn_2 it uses M2- symbol alphabet where M2<M 1

using even less spectral resolution in representing the most

4 remote past. For a variable resolution chain of order k, there

is usually an optimal combination of the size (resolution) of the

alphabets M0 thru Mkl as demonstrated in [3].
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We quantized 30 minutes of speech from a single male speaker

using a 6 bit codebook with a VFR algorithm with an average frame

rate of 30 b/s. Using this database, the optimal resolution for

a 256 states variable resolution chain is given by Md. 64 , M1 =32,

M2=16, M3=8, M 4=4. The entropy of the resulting Markov chain is

* 3.99 bits a reduction of 1.85 bits (32%) from the zero-order

model. The resulting bit rate would be 120 b/s for the spectral

information alone. To achieve this bit rate variable length

encoding is necessary. Since variable length encoding must be

used, channel errors will have a severe effect on a vocoder based

on the variable resolution model. We discuss in the next Section

* a more powerful method for the very-low-rate vocoding of speech

*that is based on segment quantization. Similarly to the Markov

model, segment quantization uses the statistical dependence of

consecutive spectra in speech to minimize the bit rate. But

segment quantization has a more robust behavior in the presence

*. of channed errors and does not require variable length encoding.

'7
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5. SEGMENT VOCODER

5.1 Introduction

*The performance of the phonetic vocoder was only 62% correct

i phoneme recognition rate. We expected that a phoneme recognition

rate of at least 80% is necessary for the vocoder speech to be

intelligible in context. To improve the performance of the - -

phonetic vocoder a large amount of hand-labelled speech is needed

to get a better estimate of the distribution of the diphone

templates. To avoid the excessively large amount of human effort

Si to label the required large database of speech, we considered an

alternate approach to the phonetic vocoder. We hypothesized that

phonetic recognition may be unnecessary for the very-low-rate

coding of speech in the range of 100 to 200 b/s. The diphone

vocoder described in Section 2 is an example of a vocoder. that

does not use recognition. The segment vocoder may be considered

as an extension of the diphone vocoder where speech is modeled as U

a sequence of segments not necessarily diphones. While a segment

is analogous to a diphone it does not necessarily correspond to

such a phonetic unit. Also, an automatic segmentation algorithm w

can be used to segment speech and avoid the extensive human

effort of hand labelling required for the diphone vocoder. 1
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An alternative viewpoint that leads to the segment vocoder

is based on a model that combines the vector quantization process

and the Markov model of speech. A segment which consists of a

variable number of consecutive spectral frames can be quantized

as a single unit. The work on Markov modeling of speech

determined that consecutive spectra are highly dependent -

therefore. not all sequences of spectra are possible. In this

case is a vector quantizer that benefits from both the

statistical dependence of the LARs of a single frame as well as

from the statistical dependence of consecutive frames would be

effective. In the segment vocoder, we exploit the statistical

dependence in speech by quantizing a segment as a single unit. "

5.2 Description of Segment Vocoder

S

In figure 5.1 we show the block diagram of the segment

vocoder. The input is the unquantized LPC parameters at 100 b/s.

The input is segmented with an average segment rate of 11

segments/s. Then each segment is quantized to the nearest

segment template in the code book using the proper distance

measure. At the receiver, the received segment templates are -

concatenated in sequence. A smoothing algorithm is used to

reduce the spectral parameter discontinuity between adjacent

segments. The resulting parameter tracks are used to drive the _
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usual LPC synthesizer. We describe below all the above stages of

the segment vocoder in more detail and discuss the performance of

the techniques used for each stage.

There are four major benefits for the segment vocoder.

1. Phonetic recognition is not necessary. The input
speech is matched spectrally as closely as possible
leaving the difficult task of recognizing the phoneme
sequence at the receiver output to the listener.

* 2. Only naturally occurring sequences of spectra are used
to determine the segment templates. Therefore, the
segment vocoder uses the statistical dependence of
consecutive spectral frames to minimize the bit rate.

3. As will be demonstrated later, the gain track and
voicing pattern of a segment are highly dependent on
the spectral sequence. The template gain track and
voicing can be used at the receiver instead of the
input's gain track and voicing. Only a level
adjustment of the gain track is transmitted for each
segment.

4. Finally, using naturally occurring segments as
templates instead of in average template as is usual in
clustering results in a crisper speech quality as
discussed below. 1 This appears to hold since the
timing pattern of a segment is not smeared by
averaging.

5.3 Segmentation

The major advantage of the segment vocoder over the diphone

vocoder is that it is completely unsupervised. We use an

automatic segmentation algorithm based on spectral derivatives as

discussed in (5]. We considered three types of segmentations:
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o Fixed length segments: each block of n frames was
considered as one segment.

o Phoneme-like segments: In this case speech is
considered as a sequence of steady states separated by
relatively fast transitions. A phoneme-like segment was
defined as the sequence of frames from the middle of a
transition to the middle of the following transition.

o Diphone-like segments: A diphone-like segment is
defined from the middle of a steady-state to the middle
of the following steady state.

We found that the diphone-like segments have the best

quality and intelligibility in our informal listening tests. We

also compared the diphone-like sbgmentation to the true diphone

segmentation as obtained by using our hand labelled database.

The two segmentations resulted in the same intelligibility and

quality. We therefore continued using, the diphone-like

segmentation for the experiments described below.

5.4 Distance Measure

Two segments will usually have different total durations.

Therefore, the two segments must be time-aligned before

evaluating the distance between them. Instead of using the

computationally expensive dynamic time-warping approach used in

isolated word recognition, we used a simple approximation called

space-sampling. As described in (6], each segment is considered

as a trajectory in spectral parameter space (14 LARs). The
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segment is resampled at M equi-distant points along that

trajectory. The corresponding spatial samples are assumed to be

time aligned and the distance between two segments is the sum of

the Euclidean distance between the M pairs of spatial samples.

The above distance measure over-emphasizes the importance of

transitions. We used a duration weighting as described in [3] to

increase the importance of the steady-states portions of a

segment. The contribution of each pair of space-samples was

weighed by the duration of the input space-samples. In this

case, the steady-states are emphasized and the vocoder speech

quality improved significantly.

5.5 Input Quantization

The segment vocoder described above uses independent

segmentation and quantization. The input is initially segmented

with an average segment rate of 11 seg/s. Then, each input

segment is quantized to the nearest template. This method of

input quantization yields occasionally unintelligible segments.

In this case, the segment generally encompasses several phonemes

and has a large quantization error. To avoid the large

quantization error of these segments we used the following method

called joint segmentation and quantization.

60
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Joint Segmentation and Quantization

In this approach, we consider all possible segmentations of the

* input such that the constraints on the segment durations are

* .satisfied. We require a minimum duration of 4 frames and a

maximum duration of 18 frames. For each possible input

- segmentation, the sequence of input segments is quantized. . The

segmentation that results in the smallest overall quantizatioh

error is selected as the optimal input segmentation. As

described in [5], a dynamic programming search is used to

implement efficiently the joint segmentation and quantization

*procedure. We also use a hybrid binary look-up in the segment

quantization process to minimize the number of distance

* calculation performed.

The hybrid binary look-up was derived using the non-uniform

binary clustering algorithm developed for vector quantization and

described in Section 3. The binary clustering algorithm was used

to divide the set of 8000 segment templates (13 bits) into 512

clusters (9 bits) each containing an average of 16 templates.

Each segment template was represented using 10 space-samples and

each space-sample consisted of the first 8 LARs. The limitation

of 8 LARs was due to the virtual memory size limitation on our

VAX computer system. The binary look-up was used to determine

* which cluster mean was nearest to an input spectrum. Then an
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exhaustive search was used to determine the nearest template to

the input from the 16 templates of the nearest cluster. This

requires an average of 18+16=34 distance calculations instead of

8000, a savings of a factor of 200.

The joint segmentation and quantization method requires a

large computational load of 300 times real time on the VAX when

the binary look-up is used. This large computational load is

justified since the resulting segment vocoder speech quality is

better than the segment vocoder that uses independent

segmentation and quantization. Further, the new vocoder avoids

the problem of having input segments which are not well matched

by a segment-template. The joint segmentation and quantization

method must be used in order to satisfy the operational

requirements of vocoder speech intelligibility in context.

5.6 Segment Template Selection

In the above experiments we did not specify how the set of

segment templated was selected. We will readily remedy this

deficiency. The set of segment templates is obtained by

automatically segmenting a training database of 15 minutes of

continuous speech. With average segment rate of 11 seg/s and

deleting long silence intervals, we obtain 8000 segments.

61
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All segments in this et are used as segment templates. By

assuming that the set of 8000. segments is a random sample of

speech segments, the above segment quantizer is a random

quantizer. The performance of such a random quantizer is

expected to be near-optimal in analogy to the following

situation: For a Gaussian random vector, with independent

components, a random quantizer can be chosen such that the

expected quantization error is asymptotically equal to the

distortion-rate function for a given bit rate (measured by

entropy) as the dimensionality of the vector approaches infinity

[7]. While the above conditions are not satisfied, we expect a

w random quantizer for the segment vocoder to be near-optimal

because fo the large dimensionality of 140 of a segment. To

determine the validity of this hypothesis, we compared the above

random quantizer to a quantizer derived by using the binary

clustering algorithm on segments. We compare below the two

methods by segment quantization.

5.6.1 Segment Clustering

The binary clustering algorithm, used in the hybrid binary

look-up described in Section 5, was used to determine a set of

8000 clusters by clustering a set of 32000 segments (8] . For

each cluster of segments two types of templates were defined:
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The mean segment template and the nearest to the mean segment

template.

The mean segment template was obtained by averaging all the

segments in a cluster using the time-alignment specified by

space-sampling, i.e., the detailed timing of all segments was

averaged as discussed in [8]. The nearest to.the mean segment

template was chosen as that segment in the cluster that was

closest to the mean segment of the cluster.

We compared both types of templates to the templates of the

random quantizer. The mean segment template quantizer requires 2

bits less templates than the random quantizer for the same mean

square error. But for the same bit rate, we found that the

random quantize has a higher quality speech than the mean segment

quantizer. The higher quality speech was obtained in spite of

the larger quantization error of the random quantizer.

Presumably this is due to the smearing of the detailed timing in

the averaging process used to obtain the mean segment template.

To avoid the smearing of the detailed timing, we used the

nearest to the mean segment template. In this case we found that

the random quantizer and the nearest to the mean template

quantize to result in the same quantization error and the same

subjective vocoded speech quality. The nearest to the mean
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clustering algorithm is equivalent to the random quantizer

* because a very small training set is used for clustering; an

average of 16 segments per cluster with a dimensionality of 140.

* Therefore, we will use a random quantizer for selecting a set of

templates for the segment vocoder.

* In the next section, we describe the methods used for

quantizing the other parameters of an LPC vocoder.

5.7 Quantization of Source Parameters

An input segment is quantized to the nearest template. At

the receiver, the detailed timing of the template is used for

* synthesis. 1 The total duration of the input segment can be

quantized with 3 bit/s such that most errors are .within

one frame or less. The input segment duration is used to

*linearly scale the corresponding segment template at the

receiver.

The gain track of a segment template was found to match the

* gain trade of the input segment, i.e. , if two segments are

spectrally close -then their gain tracks are similar. However, a

level adjustment to match the loudness of the input segment

was transmitted using 2 bits. A gain normalization algorithm was

used to minimize the range of the level adjustments as described

in [5].
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In addition to the statistical dependence of the gain track

on the spectral sequence, we found that the voicing pattern of a

segment to be completely specified by the spectral sequence. We

* do not transmit voicing in the segment vocoder. The segment

template voicing is used at the receiver.

Finally, we modeled pitch by a piece wise linear model.

*I  Pitch was assumed to be linear from the middle of a transition

region to the middle of the following transition region. An

adaptive quantizer was used to code the change in pitch from one

segment to the following segment. We used a 2 level quantizer (I

bit) with an adaptive scaling factor that is proportional to the

square root of the duration between two successive transition

regions.

Using the above quantization techniques, we implemented a

fully coded segment vocoder that uses 20 bits for each segment

and an average segment rate of 11 seg/s. We found that this

* vocoder can vocode speech with good quality and intelligibility

with an average bit rate of 220 b/s. To reduce the bit rate

further, we used a segment network analogous to the diphone

* network. We describe below the segment network used and the

complete vocoder that operates at 150 b/s. This vocoder was

* demonstrated at the final ARPA NSC Meeting in June, 1982.

* $
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5.8 Segment Network

To reduce the bit rate of the segment vocoder to 150 b/s, we

used a segment network to constrain the number of segment.

templates that can be used in quantizing the input. The segment

network is analogous to the diphone network in that only a

specific subset of templates is allowed to follow a segment

tempiate. For example, if the current input segment is quantized

to a given template, then the following input segment must be

quantized to a given template, then the following input segment

must be quantized to a template that belongs to a subset of the

segment templates as determined by the segment network. This

subset is the set of all segment templates that follow the

current template in the network.

Ideally, one should choose a network that allows all

possible segment template sequences so that the quantization

error is to inversed. A general method for choosing the segment S

network would be to determine statistically which segments are

most likely to follow a given segment. This approach would - 2

require a prohibitive amount of data. We used an alternative

approach based on a model that the spectral parameters of speech

are continuous.

-ib
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- 6. MULTIPLE SPEAKER SYNTHESIS

In any of the very-low-rate vocoders discussed in this

* report, the spectral information is reduced by removing as much

redundancy as possible. One factor in reducing the information

* to be transmitted, is that the speech model is derived from only

one speaker. For example, the speech produced by the diphone

synthesis part of the phonetic vocoder sounds much like the

speaker who spoke the database of diphone templates. However it

is desirable for the output speech to sound like the speaker who

K is talking (vocoder-user). Therefore, we investigated ways of

making the output of the phonetic synthesizer sound more like the

speaker, without having to extract a new set of diphone

templates, and using only a small amount of information that

could be transmitted on the same very-low-rate transmission

channel. These techniques can also be applied to the other VLR

vocoders described in this report.

The basic procedure used was to require the new speaker to

*.. speak for a period of from 20 seconds to 1 minute. The material

spoken could be any arbitrary text. The speech supplied was then

analyzed to extract several parameters which were then used to

modify the diphone templates used during synthesis, such that the

speech sounded more like the vocoder-user than like the database

talker.
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The parameters measured and used in the transformation are

the average vocal tract length (VTL) of the speaker, and the

long-term average (LTA) power spectrum for voiced, unvoiced, and

silence from the speaker. This procedure is described in more

detail in QPR3.

6.1 Extracting Speaker Specific Parameters

The first task in this method of multiple speaker synthesis

is to extract the speaker parameters from a speech sample. In

experimenting with samples of varying length, we have found that

at least twenty seconds of speech (excluding silences) should be

analyzed in order to obtain reliable estimates for the speaker

parameters.

The first parameter to extract is the average vocal tract

length. This can only be reliably estimated from the formants

and bandwidths during open vowels. Therefore, the program uses

* several heuristics to find thoae frames in which to measurement

of VTL would yield reliable results. Specifically, it checks for

voiced frames, with energy close to the local maxima, and with

formant frequencies in the ranges for vowels. Furthermore, any

estimates of VTL outside the range of 10-20 cm are discarded.

Then the average of those accepted values is computed. A cursory
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examination of the resulting averages agreed with our subjective

feeling for the head size of the different talkers.

The second, and probably more important set of features

extracted was the three LTA spectra for the speaker. These model

the source spectrum and average vocal tract shape of the speaker.

The LTA spectrum was computed separately for voiced, unvoiced,

and silence spectra, since it was f~lt that these resulted from

separate mechanisms, and therefore could vary independently.

The first task was to classify speech spectra into the three

classes mentioned above. For this, we used the Acoustic-Phonetic

Experiment Facility (APEF). The classifier designed was a simple

linear classifier that uses as its features, the energy in the

frame, relative to the 5 percentile energy, and the number of

zero-crossing in the frame. Each 129-point LTA spectrum is lop

smoothed using a 13 point raised cosine window.

We estimated that the average VTL and the three LTA spectra

could be quantized and transmitted using only about 150 bits,

which would take only 1.5 seconds through a 100 b/s channel.

-6.2 Synthesis Using Speaker-Specific Parameters

." The diphone synthesizer needs the speaker parameters of
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average VTL and LTA spectra for both the database speaker, whose

speech was used to create the diphone database, and for the

vocoder-user speaker, whose voice the synthesizer is trying to

duplicate. Given these speaker-specific parameters, and the

sequence of phonemes, durations, and pitches generated by the

phonetic recognizer, the phonetic synthesizer can produce speech

that sounds like the vocoder user.

Each spectrum in the diphone templates used in synthesis is

modified independently in the following way. Basically, each

spectrum is multipled by the ratio of LTA spectra of the desired

speaker, and the database speaker, for the same class of spectra. r

Also, the frequency axis is scaled according to the ratio of

average VTL's. However, the order of these transformations is

important. First, the diphone template spectrum classified as to

being voiced, unvoiced, or silence. Even thuugh we know this

information from the phoneme, we use the same classifier used in

* the analysis of the speaker samples. The spectrum is then

divided by the appropriate LTA spectrum for the database speaker

to remove his speaking characteristics. Then, the frequency axis

is linearly scaled according to the ratio of average VTL's of the

speakers. Finally, the. characteristics of the vocoder-user are

inserted by multiplying by his LTA spectrum.
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6.3 Evaluation of Multiple Speaker Synthesis

We have analyzed this multiple speaker synthesis process for

20 new speakers. The results of our effort in multiple speaker

synthesis are encouraging. There are three main conclusions that

*can be drawn. First, since the phonetic vocoder transmits

phoneme duration and pitch, these speaker characteristics are

conveyed directly. Second, for speakers whose long-term spectra

were markedly different from the database speaker, there is an

audible change in the synthetic output, and the speech can sound

*very similar to the intended speaker. The third result is that

S some of the vocoder users, sound quite different from the

database speaker, -even though they appear to have similar LTA

spectra and-VTL. Therefore, the transformation does very little,

and the transformed speech still sounds somewhat like the

database speaker. It appears that the speaker differences for

these speakers are at a more detailed level, such as the way they

pronounce particular phonemes, the phase characteristics of their

voice, or in the amount of nasalization they use, to name a few.

Thus, for roughly half the speakers, the transformation had

the desired effect, while for the others, .the speakers were

similar enough that the overall changes made didn't make them

more similar. In other words, the synthesizer output never
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sounds very different from the vocoder-user, but it is sometimes

distinguishable from speech spoken by the vocoder-user. A more

detailed speaker model would necessarily require phoneme specific

information to be transmitted. This could be accomplished by

requiring the speaker to say a particular known passage, such

that the program could extract spectra from known phonemes.

These could then be used to modify the diphones associated with

those phonemes.

While this method has been tested only for synthesis, it

seems reasonable that the same transformation would make the

recognition program more able to recognize the speech of new

speakers, without extensive training to that new speaker.
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SEGMENT QUANTIZATION FOR
VERY-LOW-RATE SPEECH CODING
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ABSTRACT

We introduce a new method for very-low-rate represents the LPC parameters of a typical
vocoding that models the input speech as a sequence occurrence of the diphone defined by the phoneme
of variable-length segments. A segment is a pair. Hence we have several templates for the same
sequence of frames, where each frame is represented diphone. The output of the vocoder is obtained by
by a spectrum, pitch and gain. We use an automatic synthesizing the best path in the network that
segmentation algorithm to obtain segments with an matches the input speech. The bit rate of this
average duration comparable to that of a phoneme. vocoder is around 130 b/s but the resulting speech
A segment is quantized as a single block. The has not been very intelligible. To improve the
distance measure used for quantization incorporates intelligibility, we simplified the network. Any
the appropriate time alignment of two segments. We diphone template was allowed to follow any template
employ a computationally efficient metric that does (hence a sequence of templates does not necessarily
not use the usual dynamic programming time warping, correspond to a sequence of phonmes). The

Two basic vocoders using the above approach of resulting vocoder is essentially a segment vocoder

block quantization have been used to transmit using diphones as segments. While the bit rate of
intelligible speech at 200 b/s. this vocoder is around 200 b/s, the output speech

1. INTRODUCTION is intelligible. Since hand labeling of speech is
necessary to obtain the diphone templates, a large

Block quantization has been used for coding human effort is required to implement this vocoder.

the parameters of an LPC vocoder to achieve a To avoid this effort, we propose to Use an
th ansmeo ate of 0automatic segmentation algorithm to define the
transmission rate of 800 b/3 ( 1]. In this paper,. emns
we describe a method based on block quantization segments.
that reduces the bit rate of an LPC vocoder to 200

b/s. Block quantization is only attractive for Besides the reduction in the bit rate of the

very-low-rate (VLR) systems for the following two spectral information over a single frame block

reasons. First, the savings in bit rate which is quantizer (vector quantization), the segment

usually a fixed number of bits, is most significant vocoder achieves additional savings in coding the
side information of an LPC vocoder (particularly

(percentage of bit rate) at low rates. Second, the gain and voicing). For each segment, we transmit a
exponential growth of the quantzer complexity with single pitch value, a segment duration and a gain
increasing b t rate makes only VLR systems adjustment. Since the gain track is highly
practical. dependent on the spectral sequence in a segment as

The new method represents the output of LPC shown in Section 4, gain is not transmitted.
Rather, the gain track of the segment template is

analysis (100 frames/s) as a sequence of segments, used and only an adjustment to the overall loudness

Each segment consists of a variable number of of the segment is transmitted. Similarly, voicing

consecutive frames. The LPC spectra in a segment 13 not transmitted and is obtained from the

are quantized as a single block independently from template. Another Possible advantage of the

other segments. We refer to this block quantizer t
(vocoder) as a segment quantizer (vocoder). Since segment vocoder is that the segment templates used

are actual speech trajectories that have occurred.
we expect consecutive LPC spectra in speech to be Hecteopusechfte cdrwilavahighly dependent, only a fraction of al 1 Hence, the Output speech of the ocoder will have a

permutations Of spectra (assumed quantized) will better quality (increased naturalness) than other

actually o fcur. Hence the bit rate of the segment methods (e.g., linear interpolation in a variable

vocoder will be lower than an LPC vocoder based on frame rate vocoder). In Section 2 we present the

separately quantizin single frames segmentation algorithm and the distance measure

used for quantization. In Section 3 we describe

An alternative approach that leads to the the vocoder, and in Section 4 we present our

segment vocoder is based on our work on the experimental results.

phonetic vocoder [2]. To achieve a transmission 2. SEGMENTATION AND DISTANCE MEASURE
rate around 100 b/s, we model speech by a diphone

network. The nod-is in the diphone network We can describe the segments of any automatic

correspond to phonemes. A pair of nodes are segmentation algorithm by the following three -

connected by several transitions: each transition characteristics:

Vr



o total segment duration.

o trajectory in spectral parameter space. Each 2nd
segment is viewed as a directed trajectory in
parameter space where detailed timing is LAR
ignored but the direction of time is
preserved.

o detailed timing. Even if two segments have
the same trajectory and total duration, they
may differ in the detailed timing.

We have used the above decomposition of the
segment variations in determing the coding methods
of the segment vocoder, as described below. While
fixed length segmentation is usually used for block
quantization, the diphone model of speech suggests
that a variable length segmentation might have a
lower rate for the same quantization error. Fixed
length segmentation will require more segment * tine samplinq
templates than variable length segmentation for the X equi-distant sampling
block quantlzer since:

lst LAR
1. The lack of synchrony between fixed length

segmentation and segment production in speech FIGURE 1. Two segments in parameter space.
will produce all shifts of a given segment
even if all segments have the same duration.

resampled at a set of M -equi-distant (Euclidean
2. "Natural" segment durations will sometimes r at a se t o t tat ( e

differ from the chosen fixed segment length norm on 1i LAs) points on the trajectory. We
resulting in segments that correspond to refer to this process as spatial sampling. The
either pieces of "natural" segments or the distance measure, shown in Fig. 1, is similar to a
concatenation of pieces of different segments.
These need not occur if a proper segmentation metric proposed by Schroeder [3]. Given two

can be used. segments with different total durations, Fig. 1, we
resample both segments at H equi-distant points

One can use any of several segmentation along their trajectories in the l4 dimensional LAB

algorithms to define the variable length segments. space. The distance measure between the two
We used a simple algorithm that considers speech as segments is defined as:

a succession of steady states separated by
transitions. Two spectral time-derivatives were d(x,y) = wi|I - Xi 2  

(2)
thresholded to determine the middle of transitions. I

The derivatives are: where Xi. Xi are vectors of 14 LA~s corresponding
dirn ito the ith spatial samples of the two segments X
di(n) z 14 (n) - x( n-i)|1

2 
, il,3 (1) and y, and wi is a weight. This distance measure

where X(n) is a vector of 1I log area ratios (LARs) defines a time warping that is increasingly similar

representing the nth frame, detects fast to a dynamic programming time warping as the
transitions while n detects 3  similarity of the two segments increases. Yet,

tranitinswiled 3 dtcsslower transitions. ths maue i mch or efcen
The steady states were determined at the points of this measure is much more effcient
minimum d1 within a window between two transitions. 

computationally.

The segments were defined to begin and end in the

middle of consecutive steady-states. The lower the For each spatial (in LAN space) sample of a
threshold on the derivatives, the higher the segment, we can associate a time of occurrence,

segment rate. However, the distributions of the i.e., the time when the input speech is at this
spectral derivatives are essentially bimodal (low point along the trajectory. We call thisspetra deivaive ar esentall bioda (lw nformtion the detailed timing. We define the
values and high values) so that a segment rate duration O t d spatial sample as the average of the
higher than 13/s is not reasonable. We decided to duoationof saals a the avereot
use 11/s (equal to expected phoneme rate). The two time intervals: the interval from the previouso- esutig $~etatonof the automatic algorithm sample and the interval to the following one. We
resulting segmentation have found that a weight, wi, proportional to the
has been found to be generally similar to the duration of a spatial sample in the distance

. diphone segmentation. measure improves the quantization process slightly.

To justify the above distance measure we
In defining the distance measure between two performed the following experiment. Using the

segments, we have to specify the time alignment of automatic segmentation algorithm at 11 segments/a,
the variable length segments. The distance measure the detailed timing of each segment was modified
we propose defines implicitly the required time while its total duration was preserved. The
warping. The sequence of LPC spectra In a segment detailed timing was changed such that the time
represents a piecewise linear trajectory In the 1 interval between consecutive spatial samples of the

dimensional LAR space. The total length (using a same segment (using M210 samples per segment) are
Euclidean norm on LARs) Of a segment is computed equal while the total duration of that segment is
and is used to define an *equi-spaced" sampled preserved. The resulting unquantized LPC :.a

representation of the segment, i.e., the segment is trajectory is resynthesized. The output speech is

t . = : ... ;,, .,,,,., . . ... :. .. _ . .,.



generally indistinguishable from the untransformed durations equals the sum of the durations of the

synthesized LPC. But one or two places in a 5- segments of the input speech).

second sentence will have a slight problem.
However, this degradation will be negligible Voicing information is not transmitted. The

compared to the expected degradation when the LPC sequence of voicing decisions is determined from

parameters are quantized to 200 b/s. Hence, the the segment template. Pitch is transmitted once

detailed timing should not be used to separate two per segment using an adaptive quantizer for the

* segments that have the same spectral trajectory. increment in pitch from the previous segment. The
increment is obtained by the best linear fit for

_3_ XQDR DESCLILQIO the pitch track. The adaptive quantizer uses 3

bits and increases the size of the nonunirform steps
We describe in this section the basic two an increasing function of the segment duration.

vocoders we have evaluated, the template selection The gain track of the template is used at the

process and the quantization methods for receiver. The gain track of the templates was

transmitting the side information, e.g., gain, normalized to compensate for changes in the

pitch, etc.. loudness level. This normalization reduced the

InputS gain quantization error. However, a 2-bit

adjustment to the gain track is transmitted to
equalize the means (in dB) of the input segment and1. Separate segmentation and quantization: The

- sequence of LPC frames of analyzed input the nearest template. We found that a gain

speech is automatically segmented at an normalization of the gain track of the templates
average rate of 11 segments/s. Each segment improved gain quantization. The normalization was
is then quantized to the nearest segment done by compensating for the changes in the overall
template using the distance measure described
earlier, loudness level of the speech used for the

2. Joint segmentation and quantization: In this templates. At the receiver, the parameters were

approach the input is not automatically smoothed at the junction of consecutive segments.

segmented. Instead, all possible The bit rate for all the side information was 88
segentations of the input with an average b/s. In Table 1, we summarize the bit allocation
tre of 11 segments/s are considered. Then used in quantizing the different parameters.
each segment is quantized using the proposed
distance measure to the nearest template. The
segmentation (with the corresponding quantized
templates) that results in the smallest Allocation
uantization error is chosen for transmission.

dynamic programming search was actually
implemented to obtain the optimal joint Spectral Segment 13 bits
segmentation and quantization of the input. Gain Adjustment 2

5 Pitch 3
Template Selection Duration 3

The set of segment templates is obtained by

automatically segmenting (11 seg/s) a large 21 bits/segment
training database of continuous speech. Each

segment is a 140 dimensional vector (14 LARs x 10 Bit Rate 21 x 11 seg/s = 231 b/s
spatial samples). Usually, a clustering algorithm
is used to obtain an optimal set of segment
templates. For the large dimensionality (140) of Table 1: Bit Allocation

the segment vocoder, the expected quantization
error of a properly chosen random quantizer is 11 RESULTS

nearly equal to the distortion rate bound.
Therefore, we do not use a computationally

expensive clustering algorithm to determine the

optimal set of templates. Instead, we use a random vocoder consisted of 15 minutes of continuous

quantizer obtained by a random sample of the speech from a single male speaker reading a

population of segments in speech. While this textbook. This data was automatically segmented at

result is derived for a vector with independent an average rate of 11/s. The resulting 9000 (13

components, and the corresponding optimal random bits) segments were used as the segment templates

quantizer is a scaled random sample [41, we expect of the random quantizer. Another set of 5
for the segment sentences from the same speaker was vocoded to

mlthe above random quantizer determine the intelligibility and quality of the
templates to be as effective. vocoder. Each sentence was six seconds long.

1= Information
The first set of experiments compared the

To complete the description of the vocoder, we following 3 systems:
present the methods adopted to quantize gain,
voicing, pitch and timing. Since the detailed
timing is not perceptually important for the I. Seieetaio Both the database1*for the templates and the input were segmented
vocoded speech, the detailed timing of the template into fixed length segments of 9 frames (or 11

is used. The total duration of a segment is frames/s). This vocoder does not transmit

a. quantized with 3 bits such that a peak error of 1 duration.
frame is allowed and real time is preserved as 2. Variable Length Seg ntation: The automatic

closely as possible (the sum of all transmitted segmentation algorithm was used to segment



both the database and the input at an average
rate of 11/s. The segment duration varied
between 4 and 18 frames. e... " . ...

3. Joint Sm u4 Ouantza;on* Thedatbase was automatical ly segmented at an .s .

av:rage rate of 11/s. Dynamic programming, as -"
described in Section 3, was used to obtain the * - .-- ,

best segmentation and quantization of the " "- . .
input. However, to reduce the computational
load we used a binary lookup for segment
quantization instead of the exhaustive search .- 4-
used in the first two systems. The binary -a

lookup was defined by performing an 8-bit %.a -1
binary clustering on the 13-bit templates.
Each cluster had an average of 5 bits of
templates. An input segment was quantized to
the nearest cluster (each cluster was . - "-
represented by its mean segment), then an I Y • . ,d A i :.
exhaustive search of all the templates in that "-"
cluster was used to determine the nearest
template to the input.

The side informtion (gain, pitch, duration FIGURE 2. Unquantized parameters (solid) and
and voicing) was coded in the sam manner for all quantized parameters (dotted) for
three vocoders. The bit rate was 200-230 b/s. The I s of speech. The variable length

output speech of all three vocoders was quite segmentation is also shown.

intelligible. While the second vocoder had a
slightly higher quality (less roughness) than the

first, it occasionally (once per sentence) missed output speech (due to naturally occurring

one or two phonemes. The reason for missing templates) and the efficiency in quantizing the

phonemes in the second vocoder is that several side information (in particular gain and voicing).

phonemes were lumped as one long segment. The We are currently investigating methods to reduce S
third vocoder is significantly better than the the bit rate to 150 b/s witn minimal loss in

first two. In fact, it does not suffer from the intelligibility. We are constraining the segment

problem of lumping phonemes into one long segment. templates to define a network analogous to the
diphone network. However, instead of using

To determine the degradation in performance phonemes to constrain the diphone templates, as in

caused by the binary lookup, we used it in the the diphone network, a threshold on the spectral

second vocoder instead of the exhaustive search, distance from the end of a segment to the beginning

The quantization error using the binary lookup with of another determines which segments can follow it. S
13 bits of templates was equal to the quantization
error of an exha'zstive search quantizer using 10.5
bits (a loss of 1.5 bits which is quite audible). ACKNOWLEDGMENT

Hence, the optimal segmentation of the third
vocoder not only compensates for this loss, but This work was supported by the Advanced
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5. CONCLUSION

We have snown that block quantization can be
used to vocode intelligible speech at 200 b/s.

Automatic segmentation based on spectral
derivatives was demonstrated to be as effective as

diphone segmentation (done by hand). The major
advantages of the segment vocoder are good quality
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ABTRACT may be used for efficient encoding of the VFR
output sequence. We then present the models we

We present a method that reduces the bit rate chose and describe some experimental results.

of a low rate LPC vocoder by modelling the sequence
of quantized spectra by a Markov chain. To 2. SOURCE MODELS
minimize the bit rate, one would want to use a
high-order chain. Unfortunately, a high-order There are two general classes of mdels that
chain would require an inordinate amount of data have traditionally been used for modelling discrete
for training. We describe in this paper thk use of information sources. Recently, Risanen (2]
a variable order Markov chain that maximizes the demonstrated that one class, the recursive models,
effective use of a given amount of speech data. is in fact superior to the other, the alphabet

""extension models. He showed that for the saw
-* To reduce the number of states of a high-orderwe dfinean quivlene reatin onthe complexity (measured by the number of probabilities

chain, we define an equivalence relation on the that specify the model), a recursive model can
states, i.e., *similar" states are grouped together always be found that has at least the same entropy

% in an equivalence class and a single conditional as an alphabet extension model. He also showed
distribution is associated with the equivalence that the converse is not true. We describe below
class. We introduce two equivalence relations. In both models.
the first, called variable order Harkov chain, the

equivalence classes represent the most probable R Models
states of any order. In the second method, called
variable resolution, the equivalence class is Let a be a string (a finite length sequence)

Si obtained by decreasing the quantization accuracy in of symbols from an alphabet S. We assume that the
representing a spectrum that belongs to a more alphabet S has N symbols (in our case, N spectral
remote past. For an LPC vocoder with 64 possible templates). The probability of a string
spectra (using 6-bit vector quantization), the S:Xlx 2 ... xn of length n is given by:
second method is superior to the first and
decreases the entropy from 6 bits to 4 bits per
spectrum with 256 equivalence classes.

1. NTR DUC IONP(s) •P(xl )  (x2lxl) .... P(Xlxlx2 ...xn.1). 
(1)a 1. INTRODUCTION

We have recently developed a variable frame The class of recursive models is defined by
rate (VFR) LPC vocoder that uses block quantization constraining the conditional pSobabilities P(xls)

" (vector quantization) (1] for quantizing the log in the following manner. Let S denote the set of
. area ratios (LARs) of. an LPC spectrum. This all finite strngs over the alphabet S. Suppose

vocoder is a single speaker system that transmits that the set S is partitioned into K equivalence
the LAts at a rate of 180 b/s: The average frame classes that are defined by a function f:
rate is 30 f/s and the LARs are quantized using 6
bits. In order to obtain a vocoder that operates f: Se-->Z where Z £ (1,2,...K) (2)
below 200 b/s, we must reduce the bit rate of the
spectral information to allow us to transmit gain,
pitch, voicing and timing information. We modelled The conditional probabilities of a recursive model
the output sequence of the VFR' algorithm using are required to satisfy
several models to achieve more efficient encoding
of the output. The simplest model was a first- P(X1s) a P(Xjf(s)). (3)
order Markov chain which reduced the bit rate to

* 128 b/a for the spectral information (from 6 bits
to 1.25 bits per transmission). Higher order In other words, the conditional probability or the
models were expected to further reduce the bit symbol x depends only on the equivalence class of
rate. However, since a limited amount of the string s. This model is specified by K(N-1)
O trainingw data was available, we had to restrict conditional probabilities. The optimal average
the type of models that can be employed. We code length required for encoding the information w
present below two general classes of models that source that corresponds to the above model Is given

: . .. -- -m~ ma dm m M m" nmm m m m



by the entropy h: increasing the model complexity (adding one more

symbol to the alphabet) may increase the bit rate.

K N This cannot happen with the recursive model. One
h Z - Pi r P(jl1) log P(JI)- (4) can see that the problem with zero memory alphabet

I=1 Jl extension is that higher order statistids must be
estimated using a recursive model, which Risannen
[2] showed can then be substituted by a recursive -

where P is the probability of the ith equivalence model without alphabet extension. We do not pursue

class and j is the Jth symbol of the alphabet and the class of alphabet extension models any further.
the base of the logarithm is two.

Usually the conditional probabilities that

specify the recursive model are estimated using an 3. MARKOT CHAIN MODELS

observed output sequence of the information source.
The maximum likelihood estimate of the conditional fErsAt-rdAr Marker Chaia

probability is
To reduce the general recursive model to a

first-order Harkov chain, we require each
P(jIi) 2 (5) equivalence class to correspond to one symbol ofthe alphabet S of the chain. Therefore, we have N

where n(Jli) is the number of times symbol j occurs equivalence classes, where N is the alphabet size.

Just after the equivalence class i has occurred, For a first-order Markov chain, the equivalence

and n(i) is the number of times the ith equivalence class of a string s is the class represented by the

class occurs in the observed sequence. For a long rightmost symbol of s. The transition probabilities

sequence, the random variable ni(P(Jli)-P(Jli)) is of this model satisfy:

asymptotically Gaussian with zero mean and with
variance P(Jti)(1-P(jIi)) [3]. Hence, the estimate P(xn.1Is) Z P(xn+lx) ()T)

is asymptotically unbiased and consistent. n

Alphabet stnAion where szxl,x 2 ...xn. Therefore, the probability
distribution of the next symbol x I+ depends only

Another class of models that can be used to on the current symbol Xn, called the state of the

model the output sequence is based on alphabet chain. To specify this model, we need to estimate
extension. In this approach, one defines new N(N-1) conditional probabilities.
symbols to represent a group (string) of symbols.

Usually the new symbols of the extended alphabet aa Order arkov Chain r

are used to represent highly probably strings. The
underlying assumption is that the model with the The entropy of a Markov chain is monotone
extended alphabet acaptures" the behavior of the nonincreasing with the order of the chain. But,

source and hence should decrease the bit rate the order of the chain one can estimate is severely

necessary to encode it. limited by the amount of training data required.
For a kth order chain, (N-I)Nk transition

There are two factors that may reduce the bit probabilities must be estimated. For a second

rate when alphabet extension is used. First, the order chain, with k=2, and N=64 symbols, we need 20 r
addition of new symbols changes the probability hours of speech (at 30 f/s) to estimate the
structure. Second, the average duration between transition probabilities (requiring only 10
successive symbols increases since the added observations/transition). Since the number of

symbols represent concatenations of the original states grows exponentially with the order of the ,

symbols. To evaluate the reduction in bit rate, we chain, we use equivalence classes on the states to

compare the bit rate of a zero memory model of an reduce the number of conditional probabilities one
information source using either the original must estimate.
alphabet SK (N letters represented by the integers
1,2,...N) or an extended alphabet 3, 1  (N+1 The equivalence classes are defined such that

letters). We do not assume that the source is zero each represents a unique state of variable order.

memory but that the model used for coding it is. A state of order k is the string of the k most

Assume that the new symbol N+1 represents the recent symbols, i.e., at time n the kth order state

string 12 (1 followed by 2). Let pl, P2 be the is the string xn-k,1xn-k+2. .x* We will use the
probabilities of occurrence of 1 and 2 respectively words equivalence class and state interchangeably.arid let p of be the joint probbility of ein that The collection of states (or equivalence classes)order.t T bit rate rn 1 using 1f1 is that we are considering can be grouped Into a statetree (Fig. 1). Each node of the tree corresponds

to a state. Each node, except the root node, has a
label which is a syMbol from the alphabet of the

rN Zx(I-p|2)(rff+F(PI2,1)-F(PI, )-F(p2'P?2)) (6) information source. The state defined by a node is
the string of symbols obtained by traversing the
tree from that node to the root node. The root

where F(x,y)z(x-y)log(x-y)-xlogx, and r is the node corresponds to the equivalence class of all

rate of the model using S,. It is relatively easy other states not accounted for by the other nodes

to show that r.1 could be larger than rN. "1ence, of the tree.

_ _ i-2



tiw 0 1 2 3 4 5 training data should be used before going to Step
3. To see the difficulty, we note that the

VFR, x a b a C d a transition counts' for recently orented- states will

state. sn  a null aba c null ad be underestimated as compared to older states. One .
method is to loop through steps 2, 3, and 4 for

tree node 2 I 6 3 1 S every observed symbol. Another method is to

analyze a block of data, then create a set of. new
null state tree states, then zero all estimates and go to step 2

again. The latter method, though computationally
more expensive, results in a model with slightly
lower entropy (by 0.1 bit).

2 3 t
a C Vaai As- A state of the

variable order Harkov model is an equivalence class
used to condition the next symbol. The purpose of
the modelling is to find the minimal number of

b equivalenoe classes (or states) needed to condition

d speech to get the lowest entropy. One method of
decreasing the number of equivalence classes with
minimal loss in the effectiveness of state
conditioning is based on a variable spectral

6 resolution representation of the classes (states).
a The idea is that strings that differ only in the

Oremote
3 past by small distances should belong to ".

the same equivalence class. We are assuming that a
FIG. 1. State tree: We show a sequence of distance between the symbols is available. In the

symbols, their state sequence and case of the VFR output sequence, a spectral

the corresponding nodes on the tree. distance is used. One method to implement the

above is to use a different codelength (set of
spectral templates) for the symbols in a state
string that depends on the position of the symbol

We present in the next section a method for in the string. The codelength decreases as the
generating a state tree and estimating the position corresponds to a more distant past. For
corresponding constrained Karkov model. However, example, let s3xn 2 x n xn be a state string. Then
we should stress that the state tree representation xn my have 64 pasble values (6 bits), x.1 32
does not allow all possible state sets. For every values (5 bits) and xn2 16 values ( bitsj. On

string that is a state, the state tree requires the state tree, this-means that the number of
that all its prefixes are also states of the model, possible labels of a node depends on the level of

the node in the state tree. This number decreases
Variable Order Model Estiaion - The approach as the level of the node increases.

is to sequentially add states to the state tree
until the required number of states has been
reached. The algorithm consists of the following: 4. EXPERIMNTAL RESULTS

Initially, we estimated a first-order Markov
1. Initialize the state tree to have one chain for a fixed rate (00 f/s) LPC vocoder that

node only: the null state, uses a 6-bit vector quantizer. The entropy
decreased from 5.50 for a zero memory source model,

2. Using the training data, estimate the to 2.25 for a first-order model. We also estimated
conditional probability distributions of a variable order model with 64 states which reduced
all states currently in the tree. the entropy to 2.13, a small improvement ovwr a

first-order chain. However, the bit rate for the

3. Test for highly probable state-symbol fixed frame rate system is still high (213 b/s for
pairs. We used a count of 30 for a the spectral information only). To reduce the bit
specific state transition pair as a rate, we used a pieoewlse linear model for the
tareahold (the training data size was an trajectory of the LPC vectors (linear in LARs) to
average of 10 counts/pair). Let an and determine the transmission points of a VFR system
Xn I be such a pair. Create a new State [4]. In addition to the reduction in bit rate, the
X-4an.,1 obtained by concatenating Xn+1 VFR voooder speech is much smoother than that of
and a.. the fixed-rate vocoder. A single speaker system

using an average frame rate of 30 f/s and a 6-bit
4. When the number of created states equals vector quantizer yields quite intelligible speech.

the required number of states, stop Using the above vocoder, we analyzed 30 minutes of
adding states and reestmate the continuous speech from a single male talke . The
conditional probabilities using all the output sequence of the VFR algorithm was used to
training data set. Otherwise, go to Step estimate several recursive models. The variable
2. resolution models used a 6-bit hierarchical (binary

tree) vector quantizer to define several quantizers
We implemented the above algorithm with two with decreasing resolution (6,5,4,...bits). Table
variations. In Step 2, it is not clear how much I shows the different models estimated and their
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Vribl. .Ordad .o.,o, (continuous increase of the number of states)

, 6 -65402 642"432 5 41211 allows a more efficient use of the available data
4 ,.2 4.19 4.15 3.99 4.64 4.5 ,. than the usual fixed order Markov chains. However, --

the selection of' the equivalence classes is
i L64 18 5 3 2 2 arbitrary. One cannot guarantee that the resulting

____.__ classes are optimal (minimal entropy). Further

OlI,,1r. 6 4? 62 64 29 25 Is work is needed to determine a criterion for
°r 2 14 5 1 32 2 6 11 selecting which states must be extended.
Order 3 I 10 37 4
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order and resolution models, we define the variable REFERENCES
R that specifies the spectral resolution used at
each level of the state tree (position in time
along the state). A value of R=65432 means that a (1) A. Buzo, A.H. tiray, Jr., R.M. Gray, et al,
6-bit quantizer is 'used at level 1 (time n), a 5- "Speech Coding Based on Vector Quantization,"
bit quantizer at level 2 (time n-1), and so on. IEEE Trans., Vol. ASSP-28, pp. 562-574, Oct.
For these models, we also show the distribution of 1980.

the number of states used with a given order (from
1 to 5). For the variable order models, the root (2) J. Rissanen, and G.G. Langdon, Jr., "Universal
node corresponds to a state of order zero (zero Modelling and Coding," IEEE Trans. Inform.
memory state). The complexity of the models Theory, IT-27, No. 1, pp. 12-22, 1981.
considered, as determined by the number of
transition probabilities estimated, is shown in (3) U.N. Bhat, "Elements of Applied Stochastic
Table 1. For the first-order Harkov chain, the Processes," John Wiley & Sons, New York, 197Z.
worst case complexity is shown. For the other

models, the actual number of conditional (4) E. Blackman, R. Viwanathan, W. Russell and
probabilities estimated is indicated. In the case J. Makhoul, "Narrowband LPC Speech Transmission
of the VFR output sequence, the variable order over Noisy Channels," Proc. ZCASSP-79, pp. 60-
model with 64 states is slightly worse than a 63, April 1979.
first-order model. The reason for this difference
is that highly probably states are not as effective
as the set of all first-order states. To improve
the performance of the variable order model, we
tried another method for selecting the states on

the state tree which are be extended. The states
with the largest contribution to the average code
length were extended first. The performance of
these models was sialar to those that used the
most probable states for extension.

To illustrate the performance of the variable
resolution model, we considered a model with 32
states. We chose different spectral resolutions
for defining the states as shown in columns 5
through 7 of Table 1. For this low number of '
states (32), we found that decreasing the
resolution to an optimal value (R=54321) has the
lowest entropy of 4.54. We also found that as the
number of states is increased, the required optimal
resolution increases. Finally, the entropy is
monotone decreasing with the number of states, aS
shown in columns 2 through 4. For a model with 256
states, the entropy is reduced from 5.85 to 3.99, a
savings of 1.86 bits.

S. CONCLUSION

In this paper we described the use of
recursive models to reduce the bit rate of the
spectral information to 120 b/s (using 256 states) '
in a 1FR vocoder. The flexibility of the models



VECTOR QUANTIZATION FOR VERY-LOW-RATE
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We describe in this paper several vector performance to optimal scalar quantization. In
quantization techniques that can be used to Section 4, we introduce a new approach for very-
transmit speech at a bit rate ranging from 150 b/s low-rate vocoding of speech based on segment
to 800 b/s. The methods can be grouped into two quantization.
classes: single frame quantization methods and
segment quantization methods. In single-frame
quantization methods, all the parameters of the

- vector being quantized represent a single frame of 2L. VECTOR aul1IZZAT
speech (typically 20 msec). In segent
quantization, the parameters of the vector being
quantized represent speech events on the order of a
phone (90 ms). We present three frame quantization In this section we describe two necessary
methods based on clustering algorithms and compare conditions for optimal vector quantization. In
their performance to Optimal scalar quantizat an vector quantization we combine several parameters
Then we describe the new segment quantization into a single vector and quantize all parameters
method that can be used to transmit intelligible simultaneously, instead of quantizing each
speech at 150 b/s. separately. The n-dimensional vector X is used torepresent a set. of n parameters. Ann-level, n-

dimensional block quantizer is defined by a
partition P:(Ci; il,i} of the space of all input
vectors into M regions, each denoted by C. A
template vector Zk is also defined for each region
C4 . The input vector 1 isquantlzed by"determining
tne region C4 that contains X, and the template Zi

* For narrowband speech compression, the LPC of that regi n is used as the quantized value of &.
vocoder achieves reasonable quality and This block quantizer has been called a vector
intelligibility at a bit rate of 2400 b/s. In the quantizer atterm uhich will be used In this paper
LPC vocoder, we quantize the log-area-ratio (LAR) to indicate that a single-frame quantization method
parameters using a scalar quantization method. In is used. i.e., the vector represents a single frame
scalar quantization each LAR is quantized (typically 20 ms) of speech.
separately. To reduce the bit rate of the LPC A nonnegative distortion measure, denoted by
vocoder, Buzo (1] proposed to use vector .d(X,Z)t is used as an objective measure of the loss
quantization for quantizing the LPC spectrum. In in accuracy in representing an input vector X by a
this method, all the linear prediction coefficients template 1. An optimal vector quantizer quantizes
that represent an input speech spectrum are an input vector using . the minimum distance
considered as a vector and quantized as a single classification rule:
unit. Using vector quantization one can reduce the

, bit rate to 800 b/s with a small decrease in the
quality of the vocoded signal. x 4 Ci <=-> d(I,7 1 ) I d(&,Xj) I=M. (1)

We describe in this paper several methods for
vector quantization and evaluate their performance
for the very-low-rate transmission o speech. We The templates of the optimal vector quantiz. - must
consider the range from 100 b/s to 800 b/s. The be the center of mass Of their corresponding t ion
vectr quantizers that We describe fall in two Ci, i.e., the template yi minimlzes
clas les:

1. Single frame Qurntization: In these f d(I,)p(X)dX, (2)
methods, the parameter vector that is-f
quantized represents the spectrum of a i
single frame of speech. These vector
gantizatlon methods have been used from where p() is the probability density function of x
100 b/s to 800 b/s. assumed to exist. The above two optimality

2. Segment Quantization: Zn this Case, the conditions were Initially used by Lloyd to design
parameter vector represents a sequence of optimal one-dimensional (scalar) quantizers. in
speeh spectra. Typically, a seent of pattern recognition,* Macqueen (2] derived the K- W
the input speech with a duration means clustering algorithm Using the above two
comparable to that of a phoneme 13 opt!iality conditions. Buzo (1] used the K-means
quantized as e unit. We have used custering algorithm for an LPC vocoder operatingthis novel method of segment quantization at 800 b/3.for vocoding speech from 1 0 b/s to 250 In the folloVing section We present several
for v(cing spekerchfrom 1 b toalgorithms for deriving a vector quantizer using
b/e (single speaker reasder, Clustering techniques.

In Section 2, we define vector quantization.
In Section 3, we describe several vector quantIzers
for single frame quantization and compare their

12 i
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L. SZtNLERA' QUANTIZATION optimal vector quantizer has a smaller

distortion than an optimal scalar
quantizer for the same bit rate. This
advantage increases as the statistical

In this section, we describe three methods for dependence of the parameters increases.
vector quantization that have been used for coding However, as we show later, for the mean- --

the LPC spectrum of' an input speech frame, All square error distortion measure, only the
three methods use a Clustering algorithm on a statistical dependence that is different
training set of input vectors for designing the from correlation will contribute to a
vector quantizer. The clustering algorithms differ difference between vector and scalar
In the amount of training data needed, the quantization.
computational and memory requirements, and the
resulting quantization error. The three methods 2. The second advantage of vector
are quantization is the ability to use vector

distortion measures that cannot be
minimized by a scalar quantizer such as

o K-means Clustering the Itakura distortion measure. However,
the usefulness of such a vector measure

o Binary clustering must be justified. In particular, we
have found no difference between the
Itakura distance measure and the simple

o Cascaded clustering Euclidean distance on LARs when compared
using 10-bit vector quantizers. The

We evaluate the performance of the above algorithms vocoded speech using the two quantizers

and compare it with optimal scalar quanti zation. were informally compared and resulted in

We then discuss their usefulness for very-low-rate similar quality. Therefore, we will use

coding of speech. the simple Euclidean distance on LARs in
the remainder of this paper.

To determine the gain of vector quantization

K-Means Almorithm over scalar quantization due to statistical
dependence, we performed several experiments that

The K-means algorithm has been used we describe below. We initially define optimal

extensively in pattern recognition. Using a scalar quantization.

training set of observed vectors representing
4 peech spectra, the K-means algorithm is a hill-
climbing algorithm that determines a set of K !
templates that minimize the clustering criterion.
The clustering criterion is the average
uantization error. In our case, we need to find We First describe the optimal scalar
= H templates. It is based on the optimality quantization process for a Gaussian random vector

conditions described is Section 2. Below, k is the oF parameters. Then we compare the mean-square
iteration index and Zi(k) is the estimate of the error of the K-means algorithm and the optimal
template of cluster Ci at iteration k. The steps of scalar quantizer in quantizing LPC parameters of ;
the algorithm are: speech

Given a set of n parameters represented by a
1. Initialization: Set kx0. Choose by some random vector x, and a fixed number of bits b, theadequate method a set of H initial optimal scalar quantizer that minimizes the mean-

spectral templates &m(l) for 1&. square error consists of three steps:

2. Classification: k<--k.1 Classify all 1. Parameter decorrelation
the training data x to the corresponding
nearest template. This defines the 2. Bit allocation
clusters Ci(IM):

3. Scalar quantizatio'.

X-Ci(k) iff d(jji(k))jd(x,zj(k)) (3) We describe each of these steps below.

iZr.Lee decorrelation: Let Q be the matrix whose

columns are the eigenvectors of the covariance

3. Template Updating: Update the template of matrix C of the Gaussian random vector 1. The new
every cluster using all model spectra parameter vector y z Q'x will have uncorrelated
assigned to that cluster in Step 2. For components.
Cluster I, the new template isN+ 1) Ts

the vector Z that minimizes th cluster tal o na The second step is to allocate the
average distance given by iven b bits among the components of .Sefa1 [41

derived the optimal bit allocation for the
Euclidean distance measure.

D(Ci(k)) a M4 d(Z,) (4)Ar oCj(k Scaarn." The third and final step is to
perform the scalar quantization of each component4. Termination Test: If the templates 1using b bits a3 allocated in the prev ous step.

it. Tst: t th temlate one mply Uses a M1ax quantizer (5designed -r. ;ckl) are significantly different from Hr ts s lct in ther os este.
7,1 k) go to Step 2; otherwise, stop. for each component.

In the application of optimal scalar

* Duda and Hart (3] present several methods For quantization to LAR quantization one estimates the
d acovariance C and the corresponding transformation

obtaining an initial set of templates. The above matrix Q from a set of training speech samples.
algorithm can be shown to converge. However, the We compared the performance of Optimal scalar
K-means algorithm may converge to a local optimum. quantization ar;, vector quantization for randomly
A classical solution to get global optimality has generated vectc with a Gaussian distribution. We --

been to use different sets of initial templates used a trainin sequence of 15,000 vectors to
(Step 1), and then to choose the best final result, compare the crformance of both quantizers from I

There are two reasons to justify the use of a to 10 bits with the dimensionality varying from 10
vector quantizer instead od a simple scalar to 14. The covariance matrix was chosen to be the
quantizer: same as that of the LAR vectors of speech spectra.

The performance of both quantizers as measured by

1. Using the same distortion measure, an the mean-square error and the entropy of the

.a ,:, .- . _ ._ - . .+ ,...,- ,M . m ,..,, . ,,. m ,,,',-.,



20 bit scalar quantizer for the second stage) has
the same performance as our optimal 30 bit scalar.
Therefore, at higher bit rates an optimal scalar
quantizer would be preferred to cascaded
clustering.

The binary cl*ustering vector quantizer has
been the Most effective single frame quantization
method for vocoding speech from 300 b/s to 800 b/s.

*-Typically, 10 bits per transmission have been used
for the spectrum. By varying the number of

I transmissions per second and the bit rate of pitch
gain., and voicing we can vary the vocoder bit

I-rate. At 400 b)s the quality of the vocoded
original is very close to 2400 b/s in a single

1..1t ut speaker system. In the next section, we describe a
74. ESJ/t new approach called segment quantization that can

be uSad for transmitting speech at 150 b/s.

to * t It 12 bits

I..it ,%. retl 4. SEGMENT QUANTIZATION

- We presented in Section 3 several* vector
quantizers based on clustering techniques. In this
section, we discuss a new vector quantizer that
does not use clustering. Instead, the set Of

. templates 13 obtained by a random sampling
-:t ,-t, 4 . i" technique. Before discussing the performance or

•..1o/0 .U/bsuch a vector quantizer, we describe the structure
of the segment vocoder (8] that uses random
quantization for transmitting speech using a bit

f" rate from 150 b/s to 250 b/s.
" The gain of vector quantization over scalar
-- ,,,, ,.quantization increases as the amount of the

.o.'~,mo, statistical dependence of a set of parameters
increases. Since we expect consecutive speech
spectra to be highly dependent, a vector quantizer
that uantizes a sequence of spectra as a unit
would %e most effective. In segment quantization
we use a segment which consists 'of a variable
number of consecutive frames as the unit for
quantization. Below, we present the segentation

By grouping the deviations from all the clusters algorithm used to define the segments, the distancetogether, we are implicitly assuming that all measure between two segments, the segment templateclusters of the first stage have the same selection process and a brief description of the

deviations (same statistics or shape), and that wL segment vocoder.
can model the statistics of each cluster by the
average over all clusters. Since this is generally
not true, cascaded clustering is suboptimal.

. Basically, by combining the deviations we are
reducing the statistical dependence gain. To
partially improve the performance of cascaded Our work on the phonetic vocoder [9] provides
clustering, we increased t the a basis for selecting what events in speech must be
clusters by using a principal component combined into one segment. In the phonetic
decomposition of the deviations before com ining vocoder, we model speech by a diphone network. Adthem. We represented the eviations of each diphone is represented by a sequence of LPC spectra

cluster along the principal components of the from the middle of a phoneme to the middle of the
corresponding cluster. Then we grouped all following phoneme. However, hand labeling of
deviations. This corresponds to rotating the speech is necessary to obtain the diphone
clusters so that their principal components align templates, rcquiring a large human effort. To
before supriMPosing them. avoid this effort, we propose to use an automaticweoe s1peascposdng them. ,-

compared several segmentation algorithm to define the segments.
algorithms on speech data represented by 14 LAR One can use any of several segmentation
vectors using the Euclidean distance. Fig. 2 algorithms to define the variable length segments.
shows (he mean square error of the different We used a simple algorithm that considers speech as

. algorithms versus the bit rate. The 1-bit stage a succession of steady states separated by
curve corresponds to the performance of cascaded transitions. Two spectral time-derivatives were
clustering using several stages where each stage thresholded to determine the middle of transitions.
corresponds to 1-bit clubtering. After 5 stages The derivatives are:
(or 5 bits) the error decreases at a rate or 6

" . dB/average bit, which would be obtained with di(n) a 11(n) - X(n-i)11 2 
, I,3 (5) "

O timal scalar quantization. Therefore, the
statistical dependence is reduced by merging where x(n) Isa vector of 14 LARa representing the
deviations. The performance of 1-bit stage nth frame. d1 detects fast transitions while d
cascaded clustering can be Improved by using an detects slower transitions. The steady states werP
elgenvector rotation on the cluster as explained determined at the points of minimum d within a
above. The gain due to the rotation is 2 bits. window between two tra&nsitions. The segments were

• Using a 4-bit stage instead of I bit with rotation defined to begin and end in the middle of
Improves performance. However, at the third 4-bit consecutive steady-states. We decided to Use an
stage (or at 8 bits of cascaded clustering) the average segment rate of 11/s (equal to expected
slope reaches the 6 dB limit of scalar phoneme rate). The resulting segmentation of the
quantization. Hence, one should use the lar est automatic algorithm has been found to be generally
bit allocation to the first stage. We also have similar to the correct diphone segentation.found that if we use 10 bits for the first stage, Lirtthcoetdponsgmtao.

the performance of the second state is equivalent
- to optimal scalar quantization. In that case, an

- op timal scalar quantizer may be used for the second i .
stare instead of clustering. As we reported in
* ection 3, a cascaded clustering vector quantizer In defining the distance measure between two

(10 bit vector quantizer for the first stage with a seaments, we have to specify the time alignment of



quantizer output was almost identical (both within have determined that the eigenvector
3%). Therefore, for a low dimensionality ( 15) one rotation of the LARS saved 3 bits.
should simply use the optimal scalar quantization
process for a Gaussian random vector.

Binary C'usterin,

sttatstical Deoendencj The K-means clustering algorithm has an
extensive computational load for both the training

The major justification for using vector (clusterin phase) and the quantization phase. The
quantzation instead of scalar quantization for extensive load is due to the exhaustive search that
speech compression has been based on the expected requires M (for H templates) distance calculations
superior performance due to the statistical to determine the nearest template. A binary
dependence Of speech spectral parameters. We have clustering procedure reduces the number of distance
seen that parameter correlation does not contribute calculations to 21ogM by imposing hierarchical
to a difference in performance between vector and structure on the clusters. This procedure is
optimal scalar quantization. Hence, we have to equivalent to defining a tree structure whose nodes
determine if speech exhibits any statistical correspond to clusters.
dependence other than correlation to Justify the .Tne binary clustering is applied sequentially
use of vector quantization. To estimate the in the following manner on a training data set.
savings in bit rate due to statistical dependence Initially, the binary clustering algorithm divides
we compared a vector quantizer with an optimal the training data set of model spectra into two
Sscalar quantizer for a data base of speech spectra clusters using the K-means algorithm with K:2.
represented by 14 LARs. The Euclidean distance was Then each cluster is further subdivided into two
used to measure the quantization error. Fig. 1 clusters until the desired number of clusters is
shows the mean-square error of both quantizers. We obtained. The K-means algorithm (where K2) is
also show in Fig. 1 the bit allocation used for the always used in dividing a given cluster.
optimal scalar quantization. For each additional There are two issues of the binary clustering
bitwe show the gigenvector that gets this technique that we consider in more detail: (1) how

additional bit and the cumulative sum of bits to choose which clusters to subdivide next, and (2)
allocated to that component. We found that the how the quantization error of a binary quantizer
vector quantizer was better than the scalar compares with that of an optimal quantizer.
quantizer. The mean-square error of the 10-bit There are several methods for selecting which
vector quantizer was equal to that of the 15-bit cluster to subdivide next. The uniform tree method
optimal scalar. a saving of 5 bits. divides all clusters at a given level in the tree.

Therefore, the resulting binary tree is uniform.
Another method is to select that cluster that has
the largest contribution to the quantization error.
This method results in a nonuniform tree.

Using the mean-square error (on LARs), we
compared the uniform binary clustering, nonuniform
binary Clustering, and the K-means clustering. The
nonuni orm binary clustering required 0.5 bits less

• than the uniform binary clustering for the same
quantization error. Further, the nonunitorm binary
clustering required 0.5 bits more than the K-means
algorithm for the same KSE.

The minimal loss in performance at' the
nonuniform binary clustering can be tolerated in
most applications gliven the tremendous savings in
computation (only 210g2H distances on the average
instead of N).

Cascaded Clustering

The advantage of vector quantization over The above clustering algorithms (K-means and
optiMal scalar quantization (a gain of 5 bits for binary clustering) require an amount of training
the same mean-square error) is most significant for dat h that grows exponentially with the bit rate.veri-low-rate vooding of speech Practical For example, one hour of speech data is sufficientl wmtation On the amount of computing and trainin for no more than 11 to 12 bits Of Clustering. The
data limits optimal vector uantizera to about g above algorithm can be described as a one-stage

to 12 bits. For hi her bit rates, suboptimal algorithm: an input vector is quantized in one
vector quantizers sucn as cascaded clusterin, step.
which Is described below may be used. However, the To reduce the amount of training data required
resulting loss in optimality reduces the advantage (in fact, we also reduce the computational load), - -
of vector quantization over optimal scalar. When we can use cascaded clustering. The idea is to
we compared the two methods (cascaded and scalar) perform the clustering in two stages. Initially, a
at 30 bits, we found vector quantization to be less clustering (using either K-means or binary
robust than optimal scalar which resulted in the clustering) is performed using r bits. We refer to
same performance for both methods. Therefore, at this stage as an r-bit stage. Then the deviation
the higher bit rates, a scalar quantizaion from the nearest template (quantization error
thod would be most erfective, vector) for all the data in the training set are

Recent published results [6] using the computed. The data set of deviations is used to
Itakura-Saito distance claim an advantage of 14 perform a second stage of clustering of t bits (t-

btstage). The two sets at templaese are Used asbits for vector quantizationi This larger gain may a vtor quantwer in temflloin asedbe explained by two factors: a vector quantizer in the following Cascadedmanner. First, the nearest template to an input
vector from the r-bit stage is determined. Then,

1. The scalar quantizer used for the the deviation (or quantization error vector) is
comparison was the minimum deviation quantized using the templates from the second t-bit
quantizer (7). This quantizer Is stage.
suboptimal for the Itakura- Saito distance The bit rate oC cascaded clustering is r~t
used for vector quantization. This bits, yet only 2r.2' bits templates have to be

- distance measure is not separable into cotimnted instead of 2
; r .  Therefore, both the

components so that a scalar quentizer can amount of training data and the number of distance
be designed to get the minimum calculations in quantization are significantly
distortion. rpdvced (both are proportional to 2r+2  Instead ot

2. The parameters used for scalar

quantization were not decorrelated. We

S . . . . ,,m,, , , ' u u ,. l ' at 
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the variable length segments. The distance measure input segment and the nearest template. At the
we propose defines implicitly the required time receiver, the parameters were smoothed at the
warpin junction of consecutive segments. The 3egen

Te sequence of LPC spectra in a segment vocoder can '-ansmit intelligible speech at 220b/s
represents a piecewise linear trajectory in the 14 for a single speaker. Using a segment network we
dimensional LAR space. The total length (using a can reduce the bit rate to 150 b/s with a minimal
Euclidean norm on LARs) of a segment is computed loss in quality [12).
and is used to define an "equ i-spaced" sampled

K representation of the se ent, i.e. the segment is
resampled at a set of 1 equi-distant (using the
Euclidean norm on 14 LARs) points on the 5. CONCLUSION
trajectory. We refer to this process as spatial
sampling. The distance measure is similar to a
metric proposed by Schroeder [10). Given two
segments with different total durations we resample Vector quantization techniques are useful for
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